					*			••	7								N.						. <i>19</i>
• • •		(A) $a_1(n-1)d$	10. nth term of A.P is:	(A) $a_1 r^{n-1}$ (B) $a_1 r^{n+1}$	9. $(n+1)^m$ term of G.P is:	æ 1			6. If w is cue root of unity, then w 15 (B) 0	(A) ds	5. If $f(x) = 3x^4 + 4x^3 + 6$	(A) A ⁻¹ B	4. For a non-singular ma	(A) $A^{-1}B^{-1}$	3. If A and B are any two	(A) $p \rightarrow q$	2. The contrapositive of $\sim p \rightarrow \sim q$ is:	(A) (0.0)	1-1. Multiplicative identity of complex number is:	NOTE: Write answers to the question are given. Which are question with Marker or pen	Time: 30 Minutes	Mathematics (Chinatia Trum)	*
	٠	(B) $a_1 + (n+1)d$, , ,	(8) $a_i r^{n+1}$	ġ.	®	(a) $\frac{Ax+B}{x^2+1} + \frac{C}{x+3}$ (b) $\frac{A}{x^2+1} + \frac{Bx+C}{x+3}$ 8. If $a_n = (-1)^{n+1}$, then 26^{th} term is:	3x-11 +1)(x+3) will be of the for	y, then w ^{is} = P. C	(B) 7	5. If $f(x) = 3x^4 + 4x^3 + x - 5$ is divided by $x + 1$, then remainder is:	® BA⁻¹	4. For a non-singular matrix A if $XA=B$ then $X=$	(B) $B^{-1}A^{-1}$	3. If A and B are any two non singular matrices then $\left(AB\right)^{-1}$	$q \leftarrow b$	$\sim p \rightarrow \sim q$ is:	(B) (0,1)	of complex number is:	NOTE: Write answers to the questions on objective answer sheet provided. Four possible answers A,B,C & D to each question are given. Which answer you consider correct, fill the corresponding circle A,B,C or D given in front of each question with Marker or pen ink on the answer sheet provided.	(colmare 1) be)	!	
		(c) $2a_1 + (n-1)d$	a.	(C) a ₁ r ⁿ⁺²	¥	(C) 26	$\frac{C}{3} \text{(c)} \frac{Ax+B}{x+3} + \frac{C}{x^2+1}$	3	6	(C) 6	en remainder is:	(C) $(AB)^{-1}$		(C) BA	$(AB)^{-1} =$	(c) $\sim q \rightarrow \sim p$		© (1,0)		wer sheet provided. Four pos III the corresponding circle A, vided.		(For all sessions)	Inter. (Part-1)-A- 2081
		(D) $a_1 + (2n-1)d$	į			(D) -26	$\frac{A}{1} \text{ (D) } \frac{A}{x^2 + 1} + \frac{B}{x + 3}$	/ 4	.0	9 -7		(D) $(BA)^{-1}$		(D) AB		(D) $\sim q \rightarrow p$		(D) (1,1)		ssible answers A,B,C & D to	X	Paper Code 6 1	
		5	20. Sol	•	19. ² t	· s	18. WIE	17. Rac		16. Pen			15. sin	200	14. 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	DÉ	13. In o	(<u>A</u>)	12. In th	9	Marks: 20	-	
		$(A) \frac{5\pi}{3} \qquad (B)$	20. Solution of $\cot \theta = \sqrt{3}$ in quadrant ill is:	(a) $\tan^{-1} \frac{2A^2}{1-A^2}$ (b)			notation a+	17. Radius of escribed circle opposite to vertex C is:	(A) 77	SID X IS:		(A) - \(\sigma \)	$15. \sin(-300^{\circ}) =$		14. 3 4 radian is equal to:		, the hour ha	(A) a ⁷	12. In the expansion of $(a+b)^7$, the s	11. With usual motation: $C_r^+C_r^-$ (A) C_r^- (B)	n n		Z
	. ,	(B) $7\frac{\pi}{6}$	l suesper	(B) $\tan^{-1} \frac{2A}{1+A^2}$		a 2s-2c		osite to	® 2π		2	ම ා රා		(35°		(B) ¹ / ₄	a clock	(a) 7a"b					
	821-11-A- ☆		is:	2			6		G	- 11 (010,000)		ດ		(0,		6	urns through an angl	<u>G</u>	econd term is:	(C)			
R	*	6 4n	*	(c) $\tan^{-1} \frac{A}{1-A^2}$	Ú.	(C) 2S-2b	3-0) >	(C) 3 <i>π</i>			0 1 1		(C) 150°		6 :	9	(C) 7ab*		, C , T			
j	S A-	(D) 777		(D) $\tan^{-1} \frac{A}{1+A^2}$		(D) 2S-c	G s	} ▷	(D) -n		Ţ	0		(D) 130 ⁰		(D) $\frac{\pi}{2}$	í	(D) B		J. O.Ţ.			
		1/02																				1	29)

Mathematics (Essay Type)

Time: 2:30 Hours

QwP-21

Marks: 80

Section -I

2. Write short answers of any eight parts from the following.

2x8=16

i. Seperate into real and imaginary parts $\frac{2-7i}{4+5i}$. ii. Factorize $3x^2+3y^2$

iii. Simplify (2,6)(3,7)

iv. Let $A = \{1, 2, 3, 4\}$, Find the relation $\{(x, y) / x + y < 5\}$ in A

v. Write the inverse and converse of $p \rightarrow q$ vi. Find the value of x if $\begin{vmatrix} 3 & 1 & x \\ -1 & 3 & 4 \\ x & 1 & 0 \end{vmatrix} = -30$.

vii. Find the condition that one root of $x^2 + px + q = 0$ is multiplicative inverse of other

viii. Evaluate $(1+w+w^2)(1-w+w^2)$.

ix. Solve the equation ax = b where a,b are the elements of a group G

x. Discuss the nature of roots of the equation $2x^2 - 5x + 1 = 0$.

xi. If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ then find the values of a and b.

xii. If A and B are square matrices of the same order, then explain why in general $(A+B)(A-B) \neq A^2-B^2$.

3. Write short answers of any eight parts from the following.

2x8=16

i. Which term of the A.P., -2,4,10,......is 148?

ii. Insert three G.M's between 1 and 16.

iii. Write in factorial form $\frac{(n+1)(n)(n-1)}{321}$. iv. Find the value of n, when $P_4 : P_3^{n-1} = 9:1$

v. If 5 is the harmonic mean between 2 and b, find b. vi. Find the number of diagonals of a 6-sided figure.

vii. Evaluate $\sqrt[3]{30}$ correct to two places of decimals. viii. Expand by binomial theorem $\left(\sqrt{\frac{a}{x}} - \sqrt{\frac{x}{a}}\right)$

ix. Resolve into partial fractions $\frac{7x+25}{(x+3)(x+4)}$.

x. Resolve into partial fractions without finding the constants $\frac{9x-7}{(x^2+1)(x+3)}$

xi. If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in G.P. show that the common ratio is $\pm \sqrt{\frac{a}{c}}$.

xii. Check whether, $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} = 2\left(1 - \frac{1}{2^n}\right)$ is true for n = 1, 2.

4. Write short answers of any nine parts from the following.

2x9=18

i. Prove that $\sec^2\theta - \cos ec^2\theta = \tan^2\theta - \cot^2\theta$ ii. Find the values of $\cos 105^0$ taking $\left(105^0 = 45^0 + 60^0\right)$

iii. Prove that
$$\frac{\sin 8x + \sin 2x}{\cos 8x + \cos 2x} = \tan (5x)$$
. Find the period of $\tan (4x)$.

v. Show that
$$\gamma = (s-c)\tan\left(\frac{\gamma}{2}\right)$$
.

vi. $\ln \triangle ABC$ a=3,b=6 and B=36⁰20' Find "b".

vii. Find area of
$$\triangle ABC$$
 if a=18, b=24 and c=30. viii. Find the value of $\cos^{-1}\left(\frac{-1}{2}\right)$.

ix. Solve the equation
$$1 + \cos x = 0$$

x. Find the soln of equation $\sec x = -2$ which lies in $[0, 2\pi]$.

xi. What is the circular measure of the angle between the hands of a watch at 4 'o' clock.

xii. Find the values of remaining trigonometric functions when $\cos \theta = \frac{9}{41}$ and the terminal arm of the angle is in quad ly

xiii. If α , β and γ are angles of a triangle ABC then prove that $\tan(\alpha+\beta)+\tan\gamma=0$

Section -II

Note: Attempt any three questions from the following.

10x3=30

5. (a) If
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$$
 verify that $(A^{-1})^t = (A^t)^{-1}$

(b) Solve the system of equations x + y = 5; $\frac{2}{x} + \frac{3}{y} = 2$.

6. (a) Resolve $\frac{1}{(1-ax)(1-bx)(1-cx)}$ into partial fractions.

(b) For what value of n, $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ is the positive Geometric Meam (G.M) between a and b.

7. (a) Prove that
$$C + C = C$$

(b) If x is so small that its cube and higher powers can be neglected then show that $\sqrt{\frac{1+x}{1-x}} \approx 1+x+\frac{1}{2}x^2$.

8. (a) Two cities A and B lie on the equator such that their longitudes are 45 E and 25 W respectively. Find the distance between two cities, taking radius of earth as 6400 kms.

(b) Show that
$$\cos(\alpha + \beta)\cos(\alpha - \beta) = \cos^2\alpha - \sin^2\beta = \cos^2\beta - \sin^2\alpha$$

9. (a) The sides of a triangle are $x^2 + x + 1$, 2x + 1 and $x^2 - 1$. Prove that the greatest angle of the triangle is 120° .

(b) Prove that
$$2 \tan^{-1} \left(\frac{1}{3} \right) + \tan^{-1} \left(\frac{1}{7} \right) = \frac{\pi}{4}$$