	· · · · · · · · · · · · · · · · · · ·			
Roll No		(To be t	filled in by 1	the candidate
	(Academia Sessions 2017			

MATHEMATICS

221-(INTER PART – II)

Time Allowed: 30 Minutes

Q.PAPER – II (Objective Type)

GROUP - I

Maximum Marks: 20

PAPER CODE = 8195

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling

t	wo or more circles will result	question with Marker or Pen ink in the answer in zero mark in that question.	-book. Cutting or filling
1-1			
	(A) $\frac{(2x+3)^{\frac{3}{2}}}{2} + c$	(B) $\frac{1}{3}(2x+3)^{\frac{3}{2}} + c$ (D) $\frac{1}{3}(2x+3)^{\frac{-1}{2}} + c$	
	(C) $\frac{1}{2}(2x+3)^{\frac{1}{3}}+c$	(D) $\frac{1}{3}(2x+3)^{\frac{-1}{2}}+c$	
2	Distance between A (3	(1) and B $(-2, -4)$ is:	
	(A) $\sqrt{17}$	(B) $5\sqrt{2}$ (C) $\sqrt{26}$	(D) $2\sqrt{5}$
3	If $f(x) = \frac{x}{x^2 - 4}$ then ra	ange of $f(x)$ is:	
	(A) All real number	(B) Rational number	
	(C) All negative real n	umber (D) Integer	. 10
4	Slope 'm' through $A(x_1)$	(y_1) $B(x_2, y_2)$ is:	
	(A) $\frac{x_2 - x_1}{y_2 - y_1}$	(B) $\frac{x_2 + x_1}{y_2 - y_1}$ (C) $\frac{y_2 - y_1}{x_2 - x_1}$	(D) $\frac{y_1 - y_2}{x_1 + x_2}$
5	$Lt \frac{\sin ax}{\sin bx} = :$		
	(A) $\frac{b}{a}$	(B) a (C) $\frac{a}{b}$	(D) $\frac{1}{b}$
6	$\int (a-2x)^{\frac{3}{2}} dx = :$ (A) $\frac{1}{5}(a-2x)^{\frac{3}{2}} + c$	10,04	
		(B) $\frac{1}{5}(a-2x)^{\frac{5}{2}}+c$	
	(C) $-\frac{1}{5}(a-2x)^{\frac{5}{2}}+c$	(D) $-\frac{3}{5}(a-2x)^{\frac{5}{2}}+c$	
7	$\int \sec x dx = :$		
	(A) $\sec x + \tan x$	(B) $\sec^2 x$	
	(C) $\ln \left \sec x - \tan x \right $	(D) $\ln \left \sec x + \tan x \right + c$	
8	If $f(x) = \frac{1}{x^m}$ then $f'(x)$		
	$(A) -xm^{-1}$	(B) $-mx^{-m-1}$ (C) $-mx^{-m+1}$	(D) $-m^{-1}x$

(Turn Over)

	N. L L. Cal Line non	monticining A (2.1)	and D (2 4) is :	
1-9	Midpoint of the line seg			
	$(A) \left(\frac{1}{2}, -\frac{3}{2}\right)$	(B) $\left(\frac{5}{2}, \frac{5}{2}\right)$	(C) $\left(\frac{1}{2}, \frac{3}{2}\right)$	(D) $\left(\frac{1}{2}, \frac{5}{2}\right)$
10	The derivative of $\frac{1}{1+1}$	- is :		
	(A) x		(C) $(1+x)^{-2}$	(D) $-1(1+x)^{-2}$
11	In circle $x^2 + y^2 + 2gx$	+2fy+c=0, the radio	ıs is :	
	$(A) \sqrt{g^2 + f^2 + c}$		$(C) \sqrt{g^2 + f^2 - c}$	(D) $g^2 + f^2 + c$
12	x = 5 is the solution of	inequality:		
		(B) $2x + 3 < 0$	(C) $x + 4 < 0$	(D) $x+3<0$
13	In vectors $\vec{a} \times \vec{b} = :$			
	(A) $\vec{b} \times \vec{a}$	(B) $-\vec{b} \times \vec{a}$	(C) $-\vec{b}$	(D) $-\vec{a} \times \vec{b}$
14	In equation of circle			
	(A) (x,y)	(B) (0,0)		(D) (0,r)
15	Magnitude of vector ?		(0) (1,0)	(D) (U,1)
1.	(A) √53	(B) √55	(C) √48	(D) √52
16	$\frac{d}{dx}(\cos^{-1}x) = :$	S.		
	$(A)^{\frac{1}{\sqrt{1-2}}}$	(B) $\frac{-1}{\sqrt{1-r^2}}$	(C) $\frac{1}{\sqrt{1+x^2}}$	(D) $\frac{1}{1+x^2}$
17	$\frac{\sqrt{1-x^2}}{1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+$	V1		
	$1+x+\frac{x}{2!}+\frac{x}{3!}+$	is Maclaurin series i	for :	
	(A) e^x	(B) $\sqrt{1+x}$	(C) $\cos x$	(D) $\sin x$
18	The vector \overrightarrow{PQ} through	· · · · · · · · · · · · · · · · · · ·		
	(A) [-1,11]	(B) $[-1, -11]$	(C) [0,11]	(D) [1,1]
19	$\frac{d}{dx}\tan^{-1}x = :$		<u> </u>	
	(A) $\frac{1}{1-x^2}$	$(B) \frac{1}{\sqrt{1-x^2}}$	$(C) \frac{1}{\sqrt{1+x^2}}$	(D) $\frac{1}{1+x^2}$
20	The focus of parabola			
	(A) (0,a)	(B) $(-a, 0)$	(C) (a, 0)	(D) $(0, -a)$
L				

173-221-I-(Objective Type)- 6875 (8195)

(Academic Sessions 2017 - 2019 to 2019 - 2021)

MATHEMATICS

221-(INTER PART - II)

PAPER – II (Essay Type) GROUP – I

Time Allowed: 2.30 hours Maximum Marks: 80

SECTION - I

2. Write short answers to any EIGHT (8) questions:

16

- (i) Find the domain and range of the function g defined by : $g(x) = \sqrt{x^2 4}$
- (ii) The real valued functions f and g are given. Find fog (x), if $f(x)=3x^4-2x^2$ and $g(x)=\frac{2}{\sqrt{x}}$, $x \ne 0$
- (iii) Evaluate $\lim_{\theta \to 0} \frac{1 \cos \theta}{\theta}$
- (iv) Evaluate $\lim_{x \to 1} \frac{x^3 3x^2 + 2x 1}{x^3 x}$
- (v) Find $\frac{dy}{dx}$ if $x^2 4xy 5y = 0$
- (vi) Differentiate w.r.t. 'x' $\cot^{-1}(\frac{x}{a})$
- (vii) Find f'(x) if $f(x) = \sqrt{\ln(e^{2x} + e^{-2x})}$
- (viii) Find y_2 if $x^3 y^3 = a^3$
- (ix) Prove that $\frac{d}{dx}(\cos ec^{-1}x) = \frac{-1}{|x|\sqrt{x^2 1}}$
- (x) Differentiate $\frac{2x-1}{\sqrt{x^2+1}}$
- (xi) Find the interval in which function is increasing or decreasing:

$$f(x) = \cos x$$
 $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

(xii) Find y_4 if $y = \sin 3x$

16

- 3. Write short answers to any EIGHT (8) questions:

 (i) Use differentials to approximate the value of 417
 - (ii) Solve $\int \frac{dx}{\sqrt{x+1} \sqrt{x}}$
 - (iii) Evaluate $\int \frac{\cot \sqrt{x}}{\sqrt{x}} dx$
 - (iv) Solve $\int \frac{\sec^2 x}{\sqrt{\tan x}} dx$
 - (v) Solve $\int e^{2x} \left[-\sin x + 2\cos x \right] dx$
 - (vi) Evaluate $\int_{0}^{\frac{\pi}{4}} \sec x (\sec x + \tan x) dx$
 - (vii) Solve the differential equation $\frac{1}{x} \frac{dy}{dx} = \frac{1}{2} (1 + y^2)$
 - (viii) Evaluate $\int x \, \ell nx \, dx$
 - (ix) The points A(-5,-2), B(5,-4) are ends of a diameter of a circle. Find centre and radius of it. (Turn Over)

- 3. (x) Transform the equation 5x-12y+39=0 into normal form.
 - (xi) Find k so that the lines joining A (7,3), B (k, -6) and C (-4, 5), D (-6, 4) are parallel.
 - (xii) Find the lines represented by $2x^2 + 3xy 5y^2 = 0$

4. Write short answers to any NINE (9) questions :

- (i) Graph the inequality $5x 4y \le 20$
- (ii) Find the equation of the circle with ends of diameter at (-3, 2) and (5, -6)
- (iii) Find the centre of the circle $4x^2 + 4y^2 8x + 12y 25 = 0$
- (iv) Find the length of the tangent from the point (-5, 10) to the circle $5x^2 + 5y^2 + 14x 12y 10 = 0$

18

- (v) Find the coordinates of the points of intersection of the line x + 2y = 6 with the circle $x^2 + y^2 - 2x - 2y - 39 = 0$
- (vi) Find the vertex of the parabola $x^2 = 4(y-1)$
- (vii) Find the foci of the hyperbola $\frac{y^2}{16} \frac{x^2}{9} = 1$
- (viii) Find a unit vector in the direction of $\underline{v} = -\frac{\sqrt{3}}{2}\underline{i} \frac{1}{2}\underline{j}$
- (ix) Find a vector whose magnitude is 4 and is parallel to $2\underline{i} 3j + 6\underline{k}$
- (x) If \underline{v} is a vector for which $\underline{v} \cdot \underline{i} = 0$, $\underline{v} \cdot \underline{j} = 0$ and $\underline{v} \cdot \underline{k} = 0$, find \underline{v}
- (xi) If $\underline{a} + \underline{b} + \underline{c} = 0$, then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$
- (xii) Find the volume of parallelepiped for which the vectors $\underline{u} = \underline{i} 4\underline{j} \underline{k}$, $\underline{v} = \underline{i} \underline{j} 2\underline{k}$ and $\underline{w} = 2\underline{i} - 3\underline{j} + \underline{k}$ are three edges.
- (xiii) Give a force $\underline{F} = 2\underline{i} + \underline{j} 3\underline{k}$ acting at a point A (1, -2, 1). Find the moment of \underline{F} about the point B(2,0,-2)

- SECTION II

 Note: Attempt any THREE questions.

 5. (a) Discuss the continuity of f(x) at x = c $f(x) = \begin{cases} 3x + 1 & \text{if } x < 1 \\ 4 & \text{if } x = 1 \\ 2x & \text{if } x > 1 \end{cases}$, c = 15
 - (b) Show that $\frac{dy}{dx} = \frac{y}{x}$ if $\frac{y}{x} = \tan^{-1} \frac{x}{y}$ 5
- 6. (a) Evaluate $\int x \sin^{-1} x \ dx$ 5
 - (b) Find the interior angles of the triangle with vertices A(6,1), B(2,7), C(-6,-7)5
- 7. (a) Evaluate $\int_{1}^{4} \frac{1}{1 + \sin x} dx$ 5
 - (b) Minimize z = 2x + y subject to constraints 5 $x + y \ge 3$, $7x + 5y \le 35$; $x \ge 0$, $y \ge 0$
- 8. (a) Prove that in any triangle ABC $b^2 = c^2 + a^2 2ca \cos B$. 5
 - (b) Find the length of the chord cut off from the line 2x + 3y = 13 by the circle $x^2 + y^2 = 26$
- 9. (a) If $y = (\cos^{-1} x)^2$ then prove that $(1-x^2)y_2 xy_1 2 = 0$ 5
 - (b) Find the points of intersection of the given conic $\frac{x^2}{18} + \frac{y^2}{8} = 1$ and $\frac{x^2}{3} \frac{y^2}{3} = 1$ 5

173-221-I-(Essay Type)-27500

5

(To be filled in by the candidate)

(Academic Sessions 2017 – 2019 to 2019 – 2021)

MATHEMATICS

221-(INTER PART – II)

Time Allowed: 30 Minutes

Q.PAPER – II (Objective Type)

GROUP - II

Maximum Marks: 20

PAPER CODE = 8198

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling

		of that question with N I result in zero mark in		wer-book. Cutting or filling
1-1	The derivative of	$\frac{1}{1+x}$ is:		
	(A) x	(B) 1+x	(C) $(1+x)^{-2}$	(D) $-1(1+x)^{-2}$
2	$\int \cos x dx = :$			
	$(A) 1-\sin^2 x$	(B) $\sqrt{1-\sin^2 x}$	(C) $\sin x$	(D) $-\sin x$
3	$\int_{1}^{2} (x^2+1) dx = :$			
	(A) $\frac{10}{3}$	(B) $\frac{3}{10}$	(C) π	(D) $\frac{\pi}{2}$
4	If $y = \cot^{-1} x$, the (A) $\frac{1}{1 - x^2}$	en $\frac{dy}{dt}$ =:		
	$(A) \frac{1}{1-x^2}$	(B) $\frac{1}{1+x^2}$	(C) $\frac{1}{x^2-1}$	(D) $\frac{1}{x^2+1}$
5	The derivative of	$\ell n(\tanh x)$ is :	*	
	(A) $\frac{1}{\tanh x}$	(B) $\frac{\sec h^2 x}{\tanh x}$	(C) $\sec h^2 x$	(D) $\sec hx$
6	$x = at^2$ and $y = 2a$	t are parametric eq	uations of:	
	(A) Parabola	(B) Ellipse	(C) Circle	(D) Hyperbola
7	If $y^2 + x^2 = a^2$, t	hen $\frac{dy}{dx} = :$	4	
	(A) $-\frac{x}{y}$	(B) $-\frac{y}{x}$	(C) $\frac{x}{y}$	(D) $\frac{y}{x}$
8	The order of $\frac{dy}{dx}$ =	$=\frac{4}{3}x^3+x-3$ is:		
	(A) 1	(B) $\frac{3}{4}$	(C) $\frac{4}{3}$	(D) -3
9	$\int_{a}^{x} 3x^2 dx = :$			

(C) $3x^3$

(A) $x^3 + a^3$ (B) $x^3 - a^3$

LHR- I-2

	(2)
1-10	If θ is measured in radian then $\lim_{\theta \to 0} \frac{\sin 7\theta}{\theta} = :$
	(A) 7 (B) $\frac{1}{7}$ (C) $\frac{7\pi}{22}$ (D) $\frac{7\pi}{12}$
11	The measure of the angle between the lines $ax^2 + 2hxy + by^2 = 0$ is given by $\tan \theta = $:
	(A) $\frac{\sqrt{h^2 - ab}}{a - b}$ (B) $\frac{2\sqrt{h^2 - ab}}{a + b}$ (C) $\frac{h^2 - ab}{a + b}$ (D) ∞
12	If $\vec{a} = \hat{i} - \hat{j}$ and $\vec{b} = \hat{j} + \hat{k}$ then $\vec{a} \cdot \vec{b} = :$
	(A) 0 (B) 1 (C) -1 (D) $\sqrt{2}$
13	The feasible solution which maximize or minimize the objective function is called:
	(A) Boundary (B) Half plane (C) Optimal solution (D) Initial values
14	The value of c for $\frac{y^2}{16} - \frac{x^2}{49} = 1$ is :
	(A) 16 (B) 49 (C) 65 (D) $\sqrt{65}$
15	The equation of a straight line represented by $x \cos \alpha + y \sin \alpha = P$ is called:
	(A) Normal form (B) Angular form
	(C) Symmetric form (D) P – form
16	The unit vector in the direction of $\vec{v} = [3, -4]$:
	(A) $5[3,-4]$ (B) $\frac{1}{5}[3,-4]$ (C) \hat{i} (D) \hat{j}
17	The points A $(-5, -2)$, B $(5, -4)$ are ends point of a diameter of the circle. The centre will be:
	(A) $(0,3)$ (B) $(0,-3)$ (C) $(5,2)$ (D) $(-5,4)$
18	xy = 0 represents:
	(A) A pair of lines (B) Hyperbola (C) Parabola (D) Ellipse
19	The projection of \vec{v} along \vec{u} is:
	(A) $\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{ u }$ (B) $\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{ v }$ (C) $\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{ u v }$ (D) $\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{ u + v }$
20	An angle inscribed in a semi-circle is:
	(A) 0 (B) $\frac{\pi}{2}$ (C) π (D) 2π

174-221-II-(Objective Type)- 9250 (8198)

LHR-1-21 Roll No (To be filled in by the candidate) (Academic Sessions 2017 - 2019 to 2019 - 2021) **MATHEMATICS** 221-(INTER PART – II) Time Allowed: 2.30 hours PAPER – II (Essay Type) GROUP - II Maximum Marks: 80 SECTION - I 2. Write short answers to any EIGHT (8) questions : 16 (i) Express the area A of a circle as a function of its circumference C. (ii) For the real-valued function $f(x) = \frac{2x+1}{2x-1}$, x > 1. Find $f^{-1}(x)$ (iii) Evaluate $\lim_{x\to 3} \frac{x-3}{\sqrt{x}-\sqrt{3}}$ (iv) Find the domain and range of g(x) = |x-3|(v) If $y = \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$, find $\frac{dy}{dx}$ (vi) Find $\frac{dy}{dx}$ if $xy + y^2 = 2$ (vii) Differentiate $\sin x$ w.r.t. $\cot x$ (viii) Find $\frac{dy}{dx}$ if $y = x^2 \ell n^{\frac{1}{2}}$ (ix) Find y_2 if $y = x^2 e^{-x}$ (x) If $y = \ell n(\tanh x)$, find $\frac{dy}{dx}$ (xi) Find $\frac{dy}{dx}$ if $y = (x^2 + 5)(x^3 + 7)$ (xii) Find f'(x) if $f(x) = \sqrt{\ln(e^{2x} + e^{-2x})}$ 3. Write short answers to any EIGHT (8) questions: 16 (i) Use differential to find $\frac{dy}{dx}$ for xy + x = 4(ii) Evaluate the integral $\int \frac{3x+2}{\sqrt{x}} dx$ (iii) Evaluate $\int \frac{x+b}{(x^2+2hx+c)^{1/2}} dx$ (iv) Evaluate $\int e^x (\cos x + \sin x) dx$

(v) Evaluate
$$\int \frac{(a-b)x}{(x-a)(x-b)} dx$$

(vi) Evaluate
$$\int_{-1}^{1} (x^{\frac{1}{3}} + 1) dx$$

- (vii) Find the area above the x-axis and under the curve $y = 5 x^2$ from x = -1 to x = 2
- (viii) Solve differential equation ydx + xdy = 0
- (ix) Find mid-point of line segment joining A(-8,3); B(2,-1)
- (x) Two points 'P' and 'O' given in xy-coordinate system. Find XY-coordinates of 'P' referred to translated axis O'X and O'Y for P(-2,6); O'(-3,2)
- (xi) Find equation of the line joining (-5, -3) and (9, -1)
- (xii) Find equation of vertical line through (-5,3)

(Turn Over)

4. Write short answers to any NINE (9) questions :

- (i) Graph the solution set of given linear inequality in xy-plane : $2x + y \le 6$
- (ii) Find the centre and radius of the circle with the given equation $5x^2 + 5y^2 + 14x + 12y 10 = 0$
- (iii) Find the focus and vertex of the parabola $x^2 = -16y$
- (iv) Write an equation of parabola with given elements: Focus (-3, 1); directrix x-2y-3=0
- (v) Find an equation of directrices of given hyperbola $\frac{x^2}{4} \frac{y^2}{9} = 1$
- (vi) Find the centre and eccentricity of given hyperbola $\frac{y^2}{16} \frac{x^2}{9} = 1$
- (vii) Find the unit vector in the same direction as the vector y = [3, -4]
- (viii) Find the constant a so that the vectors $\underline{v} = \underline{i} 3\underline{j} + 4\underline{k}$ and $\underline{w} = a\underline{i} + 9\underline{j} 12\underline{k}$ are parallel.
- (ix) Find a vector of length 2 in the direction opposite that of $\underline{v} = -\underline{i} + \underline{j} + \underline{k}$
- (x) Find the cosine of the angle θ between \underline{u} and \underline{v} $\underline{u} = [2, -3, 1]$ and $\underline{v} = [2, 4, 1]$
- (xi) Compute $\underline{b} \times \underline{a}$. Check your answer by showing that \underline{b} is perpendicular to $\underline{b} \times \underline{a}$: $a = 2\underline{i} + \underline{j} \underline{k}$; $\underline{b} = \underline{i} \underline{j} + \underline{k}$.
- (xii) If $\underline{a} + \underline{b} + \underline{c} = 0$, then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$
- (xiii) Give a force $\underline{F} = 2\underline{i} + \underline{j} + 3\underline{k}$ acting at a point A (1, -2, 1). Find the moment of \underline{F} about the point B (2, 0, -2)

SECTION - II

Note: Attempt any THREE questions.

- 5. (a) Find value of k, if the function $f(x) = \begin{cases} \sqrt{2x+5} \sqrt{x+7} \\ x-2 \end{cases}$, $x \neq 2$ is continuous at x = 2
 - (b) If $y = \tan(p \tan^{-1} x)$ then show that $(1+x^2)y_1 p(1+y^2) = 0$
- 6. (a) Evaluate $\int \frac{\sqrt{2}}{\sin x + \cos x} dx$
 - (b) Find an equation of the line through the intersection of the lines x y 4 = 0 and 7x + y + 20 = 0 and parallel to the line 6x + y 14 = 0
- 7. (a) Find the area bounded by the curve $y = x^3 4x$ and the x-axis.
 - (b) Maximize f(x,y) = 2x + 5y subject to the constraints $2y x \le 8$, $x y \le 4$, $x \ge 0$, $y \ge 0$
- 8. (a) Write equation of the circle passing through the points A (-7,7), B (5,-1) and C (10,0)
 - (b) Find a vector of length 5 in the direction opposite that of $\underline{y} = \underline{i} 2\underline{j} + 3\underline{k}$ 5
- 9. (a) Show that $y = \frac{\ell nx}{x}$ has maximum value at x = e
 - (b) Find focus, vertex and directrix of parabola $x^2 4x 8y + 4 = 0$ 5

174-221-II-(Essay Type)-37000

18