Roll No	(To be filled in by the candidate)	

(Academic Sessions 2017 – 2019 to 2019 – 2021)

STATISTICS

221-(INTER PART – II)

Time Allowed: 20 Minutes

Q. PAPER – II (Objective Type)

PAPER CODE = 8183

Maximum Marks: 17

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

11		esuit in zero mark in that que		
1-1	In sampling with repl	acement, the sampling uni	ts can be selected:	
	(A) Only once	(B) More than once	(C) Less than once	(D) None
2	Which of the following	ng " <u>CAN NOT</u> " be Ho:		
	(A) $\theta \leq \theta_o$	(B) $\theta \ge \theta_o$	(C) $\theta \neq \theta_o$	(D) $\theta = \theta_o$
3	For 2×2 contingence	y table, $d.f. =$:		Section 1. Victor to vice con distributions
	(A) $(r-1)(c-1)$	(B) $(r-1)+(c-1)$	(C) $(r-1)-(c-1)$) (D) rc – 1
4	The sequence which	(B) $(r-1)+(c-1)$ follows irregular or randon	n pattern of variations is	s called:
	(A) Signal	(B) Model	(C) Noise	(D) Trend
5	Normal distribution h	(B) Model as maximum ordinate at 3	ζ = :	
	(Α) μ	(B) σ	(C) 1	(D) 0
6	When two variables a	(B) σ re uncorrelated, then the v	alue of "r" will be:	
	(A) Zero	(B) +1	(C) -1	(D) 0.5
7	In standard normal di	stribution, mean and variar	nce respectively are:	
	(A) 0 and 3	(B) 0 and 1	(C) 0 and 5	(D) 0 and 2
8	If $\hat{y} = 2 + 0.6X$, the	n the value of slope is:		
	(A) 2	(B) 0.30	(C) 1.2	(D) 0.6
9	Graph of time series i	s called:		
	(A) Histogram	(B) Historigram	(C) Scatter diagram	(D) Ogive
10	If level of significance	e is 0.05, then level of con	dence will be:	
	(A) 0.95		(C) 0.99	(D) 0.095
11	In normal distribution	$P(-\infty < X < +\infty)$ is equa	l to :	
	(A) -1	(B) 0	(C) 102	(D) 0.5
12	The formula or functi	(B) 0 on used to estimate a parar	meter is called:	
	(A) Estimate	(B) Estimation	(C) Predictor	(D) Estimator
13	$\Sigma \overline{x} p(\overline{x})$ is equal to			
i i	(A) \bar{x}	(B) $\mu_{\bar{x}}$	(C) μ^2	(D) N
14	Accepting Ho, when			
	(A) No error	(B) Type I error	(C) Type II error	(D) α
15		hich some information is c		
	(A) Sampled popula			
16	(C) Target population In regression, $\Sigma \hat{y}$ is e		nanun	
10		_		(D) 1
	(A) 0	(B) Σ <i>y</i>	(C) a	(D) b_{yx}
17	The limit of rank corr	elation coefficient is:		
	(A) - 1 and 0	(B) $0 \text{ and } +1$	(C) -1 and $+1$	(D) $-\infty$ and $+\infty$

Roll No (To be filled in by the candidate) (Academic Sessions 2017 - 2019 to 2019 - 2021) **STATISTICS** 221-(INTER PART – II) Time Allowed: 2.40 hours PAPER – II (Essay Type) Maximum Marks: 68 SECTION - I 2. Write short answers to any EIGHT (8) questions: 16 (i) What is standard normal distribution? (ii) Write any two properties of normal distribution. (iii) In a normal distribution, if $\mu = 20$ and $\sigma = 5$, find Q.D. (iv) Why β_1 is zero in normal distribution? (v) Define points of inflection in normal distribution. (vi) In a normal distribution, $\mu_2 = 9$, find μ_3 and μ_4 . (vii) Define unbiased estimator. (viii) What is best estimator? (ix) Define interval estimate. (x) Define statistical hypothesis. (xi) Define power of a test. (xii) Define level of significance 3. Write short answers to any EIGHT (8) questions : 16 (i) Define sampling. (ii) Define non-probability sampling. (iii) If $\sigma = 5$, N = 3, n = 8, find $\sigma_{\bar{x}}^2$ if sampling is done with replacement. (iv) Define sampling frame. (v) Write down any two advantages of sampling. (vi) A population consists of 2, 4, 6, 8, 9. How many possible samples of size 3 can be drawn without replacement? (vii) Define scatter diagram. (viii) What are the parameters of simple linear regression model? (ix) Given $\hat{y} = 0.72 + 1.33x$, $\Sigma y = 16.9$ and x = 0, 1, 2, 3, 4 then show that $\Sigma y = \Sigma \hat{y}$. (x) What is the range of correlation coefficient? (xi) What is the relationship between regression coefficients and correlation coefficient? (xii) If r = 0.48, $S_{xy} = 36$ and $S_x^2 = 16$, find the value of S_x . 4. Write short answers to any SIX (6) questions : 12 (i) Define attributes. (ii) Define class and class frequency. (iii) What is ultimate class frequency? (iv) If n = 600, (A) = 240; (B) = 270, find (AB) (v) What is time series? (vi) Describe the seasonal variation. (vii) Discuss historigram. (viii) Explain the term secular trend. (ix) Discuss term noise.

(Turn Over)

SECTION - II

Note: Attempt any THREE questions.

- 5. (a) In a normal distribution the mean is 20 and S.D = 5, find:
 - (i) $P(X \ge 8)$ (ii) P(X < 24)

- (b) In normal distribution mean = 16 and variance = 25, find:
 - (i) $P(11 \le X \le 21)$ (ii) $P(X \ge 26)$

- 6. (a) A population consists of values 3, 6 and 9. Take all possible samples of size 3 with replacement. Form sampling distribution of mean. Verify the results:
- 4

- (i) $\mu_{\overline{X}} = \mu$ (ii) $\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n}$
- (b) A finite population consists of three values 2, 4, 6. Take all possible sample of size 2 with replacement. Form the sampling distribution of sample variance and verify that :

4

 $\mu_{S^2} = \frac{n-1}{n}\sigma^2$

$$S^2 = \frac{\sum (X - \overline{X})^2}{n}$$

7. (a) Find a 90% confidence interval for the mean of a normal distribution if $\sigma = 2$ and a sample of size 8 gave the values 9, 14, 10, 12, 7, 13, 11, 12

(b) Let $X \sim N(\mu, 100)$ and X be the mean of a random sample of 64 observations of X, given that $\overline{X} = 15$ test $H_0: \mu = 12$ against $H_1: \mu > 12$ use $\alpha = .05$

8. (a) For the following data:

X	6	8	10	12	14
Y	102	106	110	113	120

Find the mean values \overline{X} and \overline{Y} and using these values find the equation of the regression line Y on X in the form $Y - \overline{Y} = b(X - \overline{X})$

(b) Compute the coefficient of correlation for a sample of 20 pairs of observations Given that : $\overline{X} = 2$, $\overline{Y} = 8$, $\Sigma X^2 = 180$, $\Sigma Y^2 = 1424$ and $\Sigma XY = 404$

4

Find the association between injection against typhoid and exemption from attack from the following contingency table:

4

Attribute	Attacked	Not attacked
Inoculated	528	25
Not inoculated	790	175

(b) Calculate 7 days moving average for the following records of attendance:

Dovo	Weeks		
Days	I	II	
Sun	24	27	
Mon	55	52	
Tue	29	32	
Wed	48	43	
Thur	52	53	
Fri	55	53	
Sat	61	65	