Time: 20 Min

Marks: 15

Note: There superin

There are THREE sections in this paper i.e A, B & C. Attempt section A and return it to the superintendent within the given time.

SECTION -A

			ark in that question.	
1.	The simplified form of		•	
•	$\frac{a^6}{b^9}$	$\frac{a^5}{b^6}$	$\stackrel{@}{=} \frac{a^5}{b^9}$;	⊕ <u>a</u> 6 · <u>b</u> 6
ii.	If A is a square matrix	and $A^t = -A$, then A is called	matrix.	
(A)	Symmetric	Skew-symmetric	© Scalar	(I) Identity
iii.	Conjugate of 3 + √5 is			
•	$3-\sqrt{5}$	\oplus $-3-\sqrt{5}$	© -3+√5	
iv.	$lx^2 + mx + n$ is a polyn	omial of degree;	•	,
W	One	• Two	© Zero	1 Three
v.	L.C.M of (a^4-b^4) and (a^4-b^4)			
Ø	$a^2 + b^2$		© a-b	① a+b
vi.	The point (-3,+4) is h	peated in;	6.	
Ü	Ist quadrant	(b) Hnd quadrant	IIIrd quadrant	① IVth quadrant
vii.	If the diagonals of quad	lrilateral divides the figure into	four congruent triangles,	then the quadrilateral is a;
Ø	Trapezium	Parallelogram	© Rectangle	Square
viii.	Two sides of a right a	ingle triangle are 3 cm and 4 cr	n. Length of its hypotenus	e is
(V)	6 cm	• 5 cm	© 4 cm	① 3 cm
ix.	√81			
(3	, (i) 9	© 27	(D) . 81
х.	$log_{64} x = \frac{-5}{6}$, then $x = _$			
άV	$\frac{1}{32}$	10 . 64	© 1/8	D 8
хi.	If $a+b = -1$ and $a+b = 3$	then $(a^2 - b^2) = $		
(A)		(i) 3	● -3	0 2
xii.	$\frac{y+7}{y^2+3} + \frac{7y-7}{y^2+3} = \frac{1}{y^2+3}$			
(V)	$\frac{8y-14}{y^2+3}$	$(1) \frac{7y}{y^2 + 3}$		$\bullet \frac{8y}{y^2+3}$
xiii.	The solution set $ -x $	= 0 is;		
A)	{1}	(i) {-1}	© {0}	• {}
xiv.	In ΔΛΒC, if L. Λ≅ L	B, then bisector of	divides the \(\Delta \text{BC} \) into	two congruent angles.
				

BN-1XXVII-I MATHEMATICS (9th) (Fresh / Re-appear)

Time allowed: 2:40 IIrs

Marks: 60

SECTION- B & C

Note:

Attempt section B & C accordingly.

<u>SECTION –B</u>

Marks: 36

Q.No 2. Attempt any NINE parts of the following. All parts carry equal marks.

i. If
$$A = \begin{bmatrix} -2 & 3 \\ 2 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 1 \\ 2 & 4 \end{bmatrix}$, then show that $AB \neq BA$.

ii. If
$$z_1 = \sqrt{2} - \sqrt{3i}$$
, $z_2 = 2\sqrt{2} + 3 + \sqrt{3i}$, then find (a) $z_1 + z_2$ (b) $z_1 - z_2$

- iii. Simplify $\frac{(23.60)(8.719)^3}{\sqrt{6.93}}$ with the help of logarithm.
- iv. Find the value of ab+bc+ca, when $a^2 + b^2 + c^2 = 56$ and a+b+c = 12.
- v. Find the product of $(\frac{3}{2}P + \frac{2}{3P})(\frac{9}{4}P^2 + \frac{4}{9P^2} 1)$.
- vi. Factorize x(x+1)(x+2)(x+3)+1
- vii. Without performing division, find the value of "a", when $(2x^3-ax^2-2ax+3x+2)$ is exactly divisible by (x+1)
- viii. Find the L.C.M of $(2x^3 5x^2 + 4)$ and $(x^3 16x + 24)$.
- ix. Simplify $\frac{a^3-b^3}{a^4-b^4} + \frac{a^2+ab+b^2}{a^2+b^2}$
- x. Find the solution sets of |5x 13| + 2 = 14.
- xi. Draw the graph of the equation x+2y=6.
- xii. Find the value of a^2+b^2 and ab when a+b=11 and a-b=6.

SECTION -C

Marks: 24

Note: Attempt any THREE of the following. All questions carry equal marks.

- Q.No 3. Show by means of distance formula, that the points A(-1,4), B(1,2), C(3,4) and D(1,6) from a square. Also verify that the diagonals have equal length.
- Q.No 4. Any point equidistant from the end points of a line segment is on the right bisector of it.
- Q.No 5. Show that the sum of the lengths of any two sides of a triangle is greater than the length of the third side.
- Q.No 6. Draw a quadrilateral ABCD, such that $m\overline{AB} = 3$ cm and $m < B = 60^{\circ}$ m < A=110°, $m\overline{BC} = 3.5$ cm and $m\overline{AD} = 4$ cm. Construct a triangle equal in area to the quadrilateral ABCD.