

Marks: 60

SUBJECTIVE TYPE (PART- I)

Time :2.10 Hour

Q2. Write short answers to any SIX (6) questions:

 $(6 \times 2 = 1)$

- (i) Define exponential equation.
- (ii) Write the quadratic equation $\frac{x}{x+1} + \frac{x+1}{x} = 6$ in standard from.
- (iii) Find discriminant of the equation $6x^2 8x + 3 = 0$
- (iv) Find the nature of the roots of quadratic equation $2x^2 + 3x + 7 = 0$
- (v) Evaluate $(1 w w^2)^7$
- (vi) Without solving find sum and product of the roots of the equation $3x^2 + 7x 11 = 0$
- (vii) Define Ratio.
- (viii) If $y \propto \frac{1}{x}$ and y = 4, when x = 3 find x when y = 24.
- (ix) Find a third proportional to $a^2 b^2$, a b.

Q3. Write short answers to any SIX (6) questions:

(6×2=12

(i) Define rational fraction.

- (ii) Resolve into partial fraction $\frac{x-11}{(x-4)(x+3)}$
- (iii) If $X = \{1,4,7,9\}$ and $Y = \{2,4,5,9\}$ then find $X \cap Y$
- (iv) If $A = \{1,2,3\}$ and $B = \{2,5\}$ then find A x B and B x A
- (v) Define function.
- (vi) Find a and b, if (a-4, b-2)=(2, 1) (vii) Define arithmatic mean.
- (viii) Find the geometric mean of the observations 2, 4, 8.
- (ix) Find mode for the data 9,3,8,8,9,8,9,18.

Q4. Write short answers to any SIX (6) questions:

 $(6 \times 2 = 12)$

- (i) Define angle of elevation.
- (ii) Verify the identity $\frac{\sin\theta + \cos\theta}{\cos\theta} = 1 + \tan\theta$
- (iii) Find area of a sector of a circle of radius 16cm if the angle at the centre is 60°.
- (iv) Define obtuse angle.

- (v) Define circumcircle of a triangle.
- (vi) Define length of a tangent.
- (vii) Define segment of a circle.

(viii) Define central angle.

(ix) Define vertices of a polygon.

(PART - II)

Note: Attempt any THREE questions. Question number 9 is compulsory.

 $(3 \times 8 = 24)$

- Q5. (a) Solve the following equation by completing square $7x^2 + 2x 1 = 0$
 - (b) Prove that $x^3 + y^3 = (x + y)(x + wy)(x + w^2y)$
- Q6. (a) If '2' is added in each number of the ratio 3:4, we get a new ration 5:6. Find the numbers.
 - (b) Resolve into partial fraction $\frac{x^2 + 7x + 11}{(x+2)^2(x+3)}$
- Q7. (a) If $U = \{1,2,3,4,5,6,7,8,9,10\}, A = \{1,3,5,7,9\}, B = \{2,3,5,7\}$ then prove that $(A \cap B)' = A' \cup B'$
 - (b) Calculate the variance for the data 10,8,9,7,5,12,8,6,8,2
- Q8. (a) Prove that: $\frac{1+\cos\theta}{\sin\theta} + \frac{\sin\theta}{1+\cos\theta} = 2\csc\theta$
 - (b) Draw two circles with radii 2.5cm and 3cm. If their centres are 6.5cm a part, then draw two direct common tangents.
- Q9. Prove that "A straight line, drawn from the centre of circle to bisect a chord (Which is not diameter) is perpendicular to the chord.
- (OR) Prove that "The measure of a central angle of a minor arc of a circle, is double that of the angle subtended by the corresponding major arc."

MA		ks:	60	
W	24.1	no.	vv	

SUBJECTIVE TYPE (PART- I)

Time :2.10 Hours

Q2. Write short answers to any SIX (6) questions:

 $(6 \times 2 = 12)$

- (i) Write the quadratic equation $\frac{x^2+4}{3} \frac{x}{7} = 1$ in the standard form.
- (ii) Define radical equation.
- (iii) Find the discriminant of the given quadratic equation $9x^2 30x + 25 = 0$
- (iv) Without solving, find the sum and product of the roots of the quadratic equation Px2-qx+r=0
- (v) If α , β are the roots of the equation $4x^2 5x + 6 = 0$, then find the value of $\alpha^2 \beta^2$.
- (vi) Form a quadratic equation whose roots are -2,3.
- (vii) Define joint variation.

(viii) Find third proportional $a^2 - b^2$, a - b

(ix) If 3(4x-5y) = 2x - 7y, find the ratio x:y.

Q3. Write short answers to any SIX (6) questions:

 $(6 \times 2 = 12)$

- (i) Define identity.
- (ii) Resolve the fraction $\frac{x^3 x^2 + x + 1}{x^2 + 5}$ into proper fraction.
- (iii) If $U=\{1,2,3,4,5,6,7,8,9,10\}$, $A=\{1,3,5,7,9\}$, $B=\{2,3,5,7\}$ then verify that $(A \cup B)' = A' \cap B'$
- (iv) Define intersection of two sets.
- (v) If L={a,b,c} and M={d,e,(g) then find two binary relation in L x M.
- (vi) Suppose R={(2,4), (3,6), (4,8)} find (i) Domain of R (ii) Range of R.
- (vii) Define class limits in frequency distribution.
- (viii) Find median of 2.3, 2.7, 2.5, 2.9, 3.1, 1.9
- (ix) Find arithmetic mean by direct method of the following data 12,14,17,20,24,29,35,45
- Q4. Write short answers to any SIX (6) questions:

 $(6 \times 2 = 12)$

(i) Define quadrantal angle.

- (ii) Find "r" when $\ell = 4 \text{cm}$, $\theta = \frac{1}{4}$ radian.
- (iii) Prove that $Cot\theta Sec\theta = Cosec\theta$
- (iv) Define actue angle.

(v) Define circumcircle.

(vi) Define length of a tangent.

(vii) Define circum angle.

(viii) Define perimeter.

(ix) Define diameter.

(PART - II)

Note: Attempt any THREE questions. Question number 9 is compulsory.

 $(3 \times 8 = 24)$

- Q5. (a) Solve the equation $x^2 2x 195 = 0$ by completing the square.
 - (b) If α , β are the roots of the equation $x^2 3x + 6 = 0$, form equation whose roots are $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$
- Q6. (a) Using theorem of componendo-dividendo find the value of $\frac{m+5n}{m-5n} + \frac{m+5P}{m-5P}$ if $m = \frac{10nP}{n+P}$
 - (b) Resolve into partial fraction $\frac{1}{(x-1)^2(x+1)}$

Q7. (a) If $A = \{1,2,3,4,5,6\}$, $B = \{2,4,6,8\}$, $C = \{1,4,8\}$ prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

(b) The marks of six students in mathematics are as follows. 60,70,30,90,80,42 find variance.

Q8. (a) Verify the identity $Tan\theta + Cot\theta = Sec\theta Cosec\theta$

(b) Draw two circles with radii 3.5cm and 2cm. If their centres are 6cm apart, then draw two transverse common tangents.

Q9. Prove that perpendicular from the centre of a circle on a chord bisects it.

8

(OR) Prove that "The measure of a central angle of a minor arc of a circle is double that of the angle subtended by the corresponding major arc."