

Lahore Board 2018 (First Group)

Rol	No.	(in Figures):	(i	in Words):		
Ma	rks:	60 SUBJECTIVE TY	PE (PART- I)	Time :2.10 Ho	urs
Q2.	Writ	e short answers to any SIX (6) questions:			(6×2=	12)
	(i)	Solve by factorization: $x^2 - x - 20 = 0$	(ii)	Define radical equat	ion.	
11-	(iii)	Find the discriminant of the following equation	on: 6x	$x^2 - 8x + 3 = 0$		
4	-	Evaluate: $(1-\omega-\omega^2)^7$		W. II THE	E. J. William	
	(v)	Without solving, find the sum and the produc	t of th	e roots of quadratic e		=O
SF		1				100
		Use synthetic division to find the quotient and			- 5x + 15) + (x + .)
- 13	100	Find the value of p if the ratios $2p + 5: 3p + 4$	and.	s: 4 are equal.		4 1
$y_i(x)$) Define joint variation.	- 1		The state of	
	3505.	Find a third proportional to: $a^2 - b^2$, $a - b$	+			A.
Q3.	Writ	e short answers to any SIX (6) questions:			(6×2=	12)
	(i)	Define improper fraction.	(ii)	Define rational fract	ion.	
	(iii)	If $X = \{1, 4, 7, 9\}, Y = \{2,4,5,9\}$ then find X	$\cup Y$	of the state		
	(iv)	If $A = \{a, b\}$, $B = \{c, d\}$ then find $A \times B$ and	$\mathbf{B} \times \mathbf{A}$	V and a		
	(v)	Define domain set of relation.	(vi)	Find a and b if (a - 4	(1, b-2) = (2,1)	
	(vii)	Define arithmetic mean.		A THE PARTY	File of F	
	(viii) Find arithmetic mean: 12,14,17,20,24,29,35,4	5			
	(ix)	The salaries of five teachers in rupees are as:	11500	, 12400, 15000, 1450	0, 14800	09
Q4.	0.00	e short answers to any SIX (6) questions:		15.28	(6×2=	12)
	(i)	Define degree.	(ii)	Convert 25°30' to de	cimal degree.	
	(iii)	Find ' ℓ ', when $\theta = 180^{\circ}$, $r = 4.9$ cm	(iv)	Define obtuse angle		
	(v)	Define circular area.	(vi)	Define length of tan	gent.	
	(vii)	Define an arc of the circle.	(viii)	What is meant by se	ctor of a circle?	
	(ix)	Define circum circle. (PART	TT\			
	. 1		- 1000 E	The second of the A		•••
Note		Attempt any THREE questions. Question number	9 IS C	ompulsory.	(3×8=	24)
15.	(a)	Solve the equation: $x^4 - 13x^2 + 36 = 0$				4
	(b)	Prove that: $x^3 + y^3 = (x + y)(x + \omega y)(x + \omega^2)$	²y) -	2. 3.4 (0.1.4)	2 4 2 1 2 1	4
		x + 2y x + 2z	2000 December 1	3 × 11	4yx	
16.	(a)	Find value of $\frac{x+2y}{x-2y} + \frac{x+2z}{x-2z}$ by using theorem	em of	componendo-dividend	0 If X = X + Z	4
		9		1 VC P	out with	
	(p)	Resolve into partial fractions: $\frac{9}{(x-1)(x+2)^2}$			G BY IS WILL	4
27.	(a)	If $A = \{1,2,3,4,5,6\}$, $B = \{2,4,6,8\}$ $C = \{1,4,6,8\}$	8} the	n prove that:	100 Co.	4
		A (B C) = (A C				14.
	(b)	Find the standard deviation 'S' for the set of nu	mbers	12.6.7.3.15.10.18.5	20 10	4
	100	1+sinθ 1-sinθ		radio casoneans	ROCK TOO	
Q8.	(a)	Prove that: $\frac{1-\sin\theta}{1+\sin\theta} = 4\tan\theta$ se	CO	344 F 431 W		4
	(b)	Draw two circles with radii 2.5 cm and 3 cm.	If the	ir centres are 6.5 cm	apart, then draw	two
		direct common tangents.			20 m	4
		e that perpendicular from the centre of a circle		[) ' [[] [] [] [] [] [] [] [] []	THE PARTY OF	8
OR)	Prov	e that any two angles in the same segment of a	circle	are equal.	2011 1075	

NO	correct, fill that o	wers A, B, C and D to ea circle in front of that ques result in zero mark in that	tion with Marker or Per	The choice which you the ink. Cutting or filling t	ink is wo or
Q1.		7,-5,			15
1.	The number of ter	ms in a standard quadra	tic equation ax2 + bx +	c = 0:	
	(A) 1	(B) 2	(C) 3	(D) 4	10
2.	Product of cube ro	ots of unity is:		No.	
_	(A) 0	(B) 1	(C) -1	•(D) 3	
3.		$f ax^2 + bx + c = 0 is:$		grant service.	
020	$(A) b^2 - 4ac \qquad .$	(B) $b^2 + 4ac$	(C) $-b^2 + 4ac$	(D) -b ² -4ac	
4.	If $u \propto v^2$ then:	(8) to all 22 m	da speni Onichi		
	$(A) u = v^2$	(B) $u = kv^2$	(C) $uv^2 = k$	(D) $uv^2 = 1$	
5.	If $\frac{a}{b} = \frac{c}{d}$ then con	ponendo property is:			
200	(A) $\frac{a}{a+b} = \frac{c}{c+d}$	(B) $\frac{a}{a-b} = \frac{c}{c-d}$	(C) $\frac{ad}{bc}$	(D) $\frac{a-b}{b} = \frac{c-d}{d}$	
6.	A fraction in which	the degree of numerator	is loss than the degree	of the denominator is a	.n.a.
	(A) An equation	(B) An improper fracti	ion (C) An identity		
7.	A set with no eleme	ent is called:	ion (c) An identity	(D) A proper fracti	on
	(A) Subset	(B) Empty set	(C) Singleton set	(D) Super set	1.
0	If A⊆B then A∩		(-) 8	(D) Duper sec	
0.			10 miles 10 miles	The state of the	
9.	(A) A	(B) B	(C) ¢	(D) A U B	
′	A frequency polygo (A) Closed figure		O'NON Olasta	m) m l l	
10		(B) Rectangle	(C) Circle	(D) Triangle	7
10.	secθ cotθ =	_	*0	323	
374	(A) sinθ	(B) $\frac{1}{\cos\theta}$	(C) (in)	$\sin\theta$	
11.		cosθ riangle is denoted by:	$\sin\theta$	cosθ	
• • •	(A) ∠			. L. L	
12	17.	(B) Δ	(C) T	(D) O	
14.	A circle has only or				
	(A) Secant	(B) Chord	(C) Diameter	(D) Centre	ħ.
13.	The arcs opposite to	o incongruent central an	gles of a circle are alw	ays:	
	(A) Parallel	(B) Perpendicular	(C) Congruent	(D) Incongruent	
14.	The length of the di	iameter of a circle is how	many times the radiu	s of the circle?	
	(A) 4 times	(B) 3 times	(C) 2 times	(D) 1 time	
15.	How many common	n tangents can be drawn			
	(A) 1	(B) 2	(C) 3	(D) 4	

40.00		
Мa	rks:	60

SUBJECTIVE TYPE (PART- I)

Time: 2.10 Hours $(6 \times 2 = 12)$

Q2. Write short answers to any SIX (6) questions:

$\frac{x}{x+1}$	$+\frac{x+1}{x}$	= 6
	$\frac{x}{x+1}$	$\frac{x}{x+1} + \frac{x+1}{x}$

(ii) Write the standard quadratic equation and also write quadratic formula to solve it.

(iii) Find the sum and product of the roots of the equation $2px^2 + 3qx - 4r = 0$ without solving.

(iv) Form a quadratic equation whose roots are $3+\sqrt{2}$ and $3-\sqrt{2}$

(v) Evaluate: $(1-3\omega-3\omega^2)^5$

(vi) Define synthetic division.

(vii) Find p, if 12, p and 3 are in continued proportion.

(viii) Find the ratio x: y, if 3(4x-5y) = 2x-7y

(ix) Find a fourth proportional to 5, 8, 15

Q3. Write short answers to any SIX (6) questions:

 $(6 \times 2 = 12)$

(i) What is an improper fraction?

Find partial fraction of $\frac{3}{(x+1)(x-1)}$

(iii) If $X = \{1,4,7,9\}$ and $Y = \{2,4,5,9\}$ then find $Y \cap X$

(iv) If $X = \{1,3,5,7, ---, 9\}$, $Y = \{0,2,4,6,8, ---, 20\}$ and $Z = \{2,3,5,7,11,13,17,19,23\}$ then find:

$$(X \cap Y) \cap Z$$

(v) Find a and b if (2a+5,3)=(7,b-4)

(vi) Define an onto function.

(vii) Define a frequency distribution.

(viii) Find arithmetic mean by direct method: 200, 225, 350, 375, 270, 320, 290

(ix) For the following data, find the harmonic mean: |x| | |12| |5| |8| |4|

Q4. Write short answers to any SIX (6) questions:

(i) Verify the identity: $(1 - \sin \theta)(1 + \sin \theta) = \cos^2 \theta$

(ii) How many minutes are there in two right angles?

(iii) Find 'r', when $\ell = 52 \, cm$, $\theta = 45^{\circ}$

(iv) What is meant by zero dimension?

(v) Define circumference.

(vi) Define secant.

(vii) Define chord of a circle.

(viii) Define cyclic quadrilateral.

(ix) Define an arc.

(PART - II)

Note: Attempt any THREE questions. Question number 9 is compulsory

 $(3 \times 8 = 24)$

Q5. (a) Solve the equation: $5x^{\frac{1}{2}} = 7x^{\frac{1}{4}} - 2$

(b) Find the value of h using synthetic division, if 3 is the zero of the polynomial 2x3 - 3hx2 +

Q6. (a) Using componendo-dividendo theorem, solve the equation

(b) Resolve into partial fraction: $(x^2-1)(x+1)$

Q7. (a) If $U=\{1,2,3,4,\dots,10\}$, $A=\{1,3,5,7,9\}$ and $B=\{1,4,7,10\}$ then verify that $B-A=B\cap A'$

(b) Calculate variance for the data: 10, 8, 9, 7, 5, 12, 8, 6, 8, 2

Q8. (a) Verify: $(\tan\theta + \cot\theta) \tan\theta = \sec^2\theta$

(b) Draw two equal circles of each radius 2.4 cm. If the distance between their centres is 6cm, then draw their transverse tangents?

Q9. Prove that a straight line, drawn from the centre of a circle to bisect a chord (which is not a diameter) is perpendicular to the chord.

(OR) Prove that the measure of a central angle of a minor arc of a circle is double that of the angle subtended by the corresponding major arc.