Mathematics (Part-I)

(Fresh/New Course)

Upper Triangular

Total Marks: 100

VERSION: B

Note: T	here are three sections in	VERSION:		
Time Alle	owed: 20 Minutes	"Sectio	n-A''	Marks:
	Use black ball poin	n on the <u>MCOs Answer Sh</u> t or marker for shading only o varded for cutting, erasing, ove	<u>teet</u> only. ne circle for correct option o	of a question.
Q. 1.	Choose the correct of	ption i.e. A,B,C, or D.		
1.	If $u = 2i - j + 3k$ then	u =		•
		$\sqrt{14}$		(b) 4
2.	Solution set of $z^2 + 4 =$	= 0 is		
	● {±2 <i>l</i> }	® {±2}	⑤ {±4i}	None of these
3.	If A is a square matrix of	of order 3, then $A - A^t$ is	• • • • • • • • • • • • • • • • • • • •	•
	Symmetric matrix	Null matrix	Skew symmetric	c None of these
, 4.	If $a \cdot b \times c = 0$ then the	e vectors a, b, c are	•••••	
•	Perpendicular	Coplanar	© Unit vectors	None of these
5.	The arithmetic mean b	etween $\sqrt{2} + 3$ and $\sqrt{2} - 3$	is	,
•	(A) 0	⊕ −5	© 6	\bullet $\sqrt{2}$
6.	The sum of an infinite ge	ometric sequence whose first to	erm(a ₁)is 1 and common ra	itio (r) is $\frac{1}{3}$ is given by $S_{\infty} = \dots \dots$
	\bullet $\frac{3}{2}$. © 1	Does not exist
7. ,	The sum of first 'n' terr	ns of an arithmetic series is		
	(A) $2a + (n-1)d$			
8.	ⁿ P _r =		/ · ·	•
	\bigcirc $(n-r)!$		n! (n-r)!	
9.	If A and B are two mut	ually exclusive events then		•••
		(B) $\frac{P(\Lambda)}{P(B)}$	© 0 Q	P(A) + P(B)
10.	The general term in the	e bi-nomial expansion of (a	$(a+b)^n$ is $T_{r+1} = 0$	********
	$igotimes a^{n-r}b^r$		⑥ (ⁿ) a ^t b ^{n-r}	\bigcirc $a^r b^{n-r}$
11.	In the expansion of (a	+ b) ⁹ , the sum of exponent	s of a and b in each term	is equal to
	• 9	® 10	© 0 .	None of these
12.	0 -			(A) NY (A)
12	(A) Even $\sin (\pi + \theta) = \dots$	- · · · · · · · · · · · · · · · · · · ·	© Constant	None of these
	_	B — cos θ	⑥ sin θ	- sin θ
14.	$\cos(\alpha + \beta) + \cos(\alpha - \beta)$		5.11.0	Sinto
	(A) $2\cos\alpha\sin\beta$	2 cos α cos.β	© 2 sin α sin β	② 2 sin α cos β
15.		is given by $R = \dots$		
,		(B) $\frac{\Delta}{s}$	$ \bigcirc \frac{\Lambda}{s-a} $	O None of these
· 16.	The maximum value of	$fy = 1 + 2 \sin \theta \text{ is } \dots . $	******	
•	⊗ 5	B 1	6 3 * .	© 2
17.	_		-	_
	R 10 2 31	B R − {2}	② 2π	None of these
18.	The matrix 0 0 -5 0 0 0	is in form.	·	0.40.41
. 10	Reduced echelon The additive inverse of	® Echelon	© Triangular	All of these
19.	The additive inverse of \bigcirc 5 + 3 i	0 -5 - 3i	\bullet -5+3 t	0 0 0 1 1 1 1 1
	[2 3 1]		w utus	
20	10 4 -2 16	matriv	4	

O Diagonal

Scalar

(B) Lower Triangular

Total Time: 2:40 Hours

Mathematics (Part-I)

(Fresh/New Course)

"Section-B"

Marks: 50

Total Marks: 80

- Attempt any Ten (10) of the following parts. Each part carries equal marks. Q, 2.
- Verify $\frac{\overline{Z_1}}{\overline{Z_2}} = \frac{\overline{Z_1}}{\overline{Z_2}}$, when $Z_1 = 2 3i$, $Z_2 = 4 i$. (i)
- Maximize f(x, y) = 3x + 4y subject to the constraints $2x + 3y \ge 6$, $x + y \le 8$, $x \ge 0$, $y \ge 0$. (ii)
- Reduce to Echelon form A = $\begin{bmatrix} 2 & -5 & 1 \\ 3 & 0 & -4 \end{bmatrix}$ (iii)
- Let $\overrightarrow{OB} = i j + 2k$, $\overrightarrow{OA} = i + j + k$. Find direction cosines of \overrightarrow{AB} . (iv)
- Find the work done by the force $\vec{F} = 2i + 3j + k$ in displacement of an object from point (v) A(-2, 1, 2) to the point B(5, 0, 3).
- A person went on a diet for 10 weeks. Each week he lost 3 pounds. At the end of the dieting period he (vi) weighed 218 pounds. How much did he weigh before he began dieting?
- Suppose that the third term of a geometric sequence is 27 and the fifth term is 243. Find the first term and (vii) common ratio of the sequence.
- Solve for 'n' when $^{n+1}C_4 = 6$, $^{n-1}C_2$ (viii)
- Simplify $\sum_{k=0}^{3} \frac{2^k}{(k+1)}$ (ix)
- Given $\sin \alpha = \frac{12}{13}$ and $\cos \beta = \frac{3}{5}$ where α , β are in the first quadrant. Then find the value of $\cos(\alpha + \beta)$. (x)
- Find the area of the inscribed circle of the triangle with measures of the sides 55m, 25m, 70 m. (xi)
- Factorize $P(z) = 3z^2 + 7$ (iix)
- If $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$, show that $(A^{-1})^{-1} = A$ (xiii)

"Section-C"

Marks: 30

Attempt any Three (3) questions. Each question carries equal marks. Note:-

- Find the sum of the series $\sum_{k=1}^{n} \frac{1}{k^2 + 7k + 12}$. Q. 3.
 - Find the value of 'n', when $\frac{n!}{(n-4)!} : \frac{(n-1)!}{(n-4)!} = 9:1$
- Find the term independent of 'x' in $\left(2x^2 + \frac{1}{x}\right)^2$ Q. 4.
 - Find the inverse function of $f(x) = \frac{2x+1}{x-1}$, x > 1. (b)
- Find the angle of largest measure when a = 74, b = 52, c = 47. Q, 5. (a)
 - Find the area of triangle ABC, when a = 92, b = 71, $\gamma = 56^{\circ} 44'$.
- Let $\overrightarrow{OA} = i + j + k$, $\overrightarrow{OC} = j + k$, $\overrightarrow{OD} = 2i + j$. If H and K are the mid points of AC and CD, Q. 6. Show that $2\overrightarrow{HK} = \overrightarrow{AD}$
 - Prove the identity $\frac{\cos \beta + \cos 3\beta + \cos 5\beta}{\sin \beta + \sin 3\beta + \sin 5\beta} = \cot 3\beta$