	·			the Answer Book 2	51	
			(in Words)			* ************************************
Superintendent Seal & Signature			re FIC. No (For	FIC. No (For office use only)		
			111601		FIC, No (For office t	ise only)
'ime: 20 M lote:	iere are Iinutes Atten even Secti	Iours THREE Sections of this I npt all parts of Section if you have not attem on-A and no credit wil	SECTION-A - A. Section - A mu pted any question. C I be given to such ar	tempt cach according to \(\) ast be return to the su Overwriting/ defacing swer.	N perintendent after 20	Iarks: 20 minutes
I.		the correct option i.e. A/I $(-i)^{23} =$		es.		B
		` ,	(B) <i>i</i>	(C) 1	(D) -1	<u></u>
	ii.	Let z be a complex number	z and \overline{Z} is its conjugate	, then $Z \cdot \overline{Z} =$		7
				(C) $ Z ^2$	(D) $(z)^{\frac{1}{2}}$	
	***	A square matrix $A = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$				\Box
	111.	(A) Scalar	(B) Row	(C) Column	(D) Diagonal	
	iv.	In matrix multiplication th (A) Associative	A A	property does not hold. (C) Distributive		В
	٧.	Let \hat{a} be a unit vector	r of vector \hat{a} then \hat{a}			(
		$(A)^{a. a }$	(B) $\frac{ a }{a}$	(C) $\frac{\vec{a}}{ a }$	(D) $\vec{a} + a $	المحكيا
	vi.	If α , β , and γ are the	e direction angles of a ve	ector, then $\cos^2 \alpha + \cos^2 \alpha$	$^{2}\beta + \cos^{2}\gamma = \underline{\qquad}$	A
		(A) 1	(B) 0	(C) -1	(D) None of these	
	vii.	If \vec{a} and \vec{b} are two ve (A) $ a b \cos\theta$		of $(\vec{a} \times \vec{b})$ is $ \vec{a} \times \vec{b} $ (C) $ a b \cos\theta \hat{n}$		B
	viii.	The fourth term of $a_n = (-1)^n$	$1)^{n} \frac{(n+1)}{n}$ is			17
•		(A) $\frac{-4}{3}$	(B) $\frac{3}{3}$	(C) $-\frac{6}{5}$	(D) $\frac{5}{4}$	لسيطسا
•	ix.	The geometric mean of tw				D
		(A) 144	(B) 12	(C) 5	(D) $\frac{25}{2}$	اسلواسا
	X .	Let A, G and H be the Ari	thmetic, geometric and	Harmonic mean respectiv	vely then $G^2 = $	A
			(B) $A + H$	_	(D) $\frac{H}{A}$	
2 1 14. (xi.	The n th term of the series	$1.2^2 + 2.3^2 + 3.4^2 + \dots$	•-		B
	-	(A) $n(n-1)^2$	(B) $n(n+1)^2$	(C) $n^2 \cdot (n+1)$	(D) $n^2 \cdot (n-1)$	1
	xii.	How many different word				
		(A) 60	(B) 90	(C) 120	(D) 180	•

xiii.	When a coin is tossed the	en the probability of getti	ng head is		B
	$(A) \ \frac{1}{3}$	(B) $\frac{1}{2}$	(C) $\frac{1}{4}$	(D) $\frac{1}{6}$	L ES _1
xiv.	If A and B are mutually (A) : $P(A) + P(B)$	exclusive events, then P ($(B) = \underbrace{\qquad \qquad}_{(B) P(A) - P(B)}$	·)	A
ı	(C) $P(A) + P(B) =$	$P(A \cup B)$	(B) $P(A) - P(B)$ (D) $P(A) + P(B)$)-P(A N B)	
XV.	The number of terms in t (A) 6	the expansion of $(x + 2)$ (B) 7	(C) 8	(D) 9	C.
XVI.	If each element of Y is the i	mage of some element in X (B) Bijective	, then the function $f: x \to y$ (C) Injective	is calledfunction, (D) Onto	D
•	If $f(-x) = x$, then the find $f(-x) = x$	(B) Identity	(C) Even	on. (D) Linear	
· XVii	i. $\tan(\frac{\pi}{2} + \theta) =$				B
	(A) $\tan \theta$	$(B)^{\nu} - \cot \theta$	(C) $\cot \theta$	(D) $-\tan\theta$	
xix.	$\cos\frac{\theta}{2} =$				A
	(A) $\sqrt{\frac{1+\cos\theta}{2}}$	(B) $\sqrt{\frac{1-\cos\theta}{2}}$	(C) $\sqrt{\frac{1-\sin\theta}{2}}$	(D) $\sqrt{\frac{1+\sin\theta}{2}}$	·
XX.	The range of $Sin x$ is (B) $\begin{bmatrix} -1,0 \end{bmatrix}$	(B) [0,1]	(C) $\sqrt{\frac{1-\sin\theta}{2}}$ (C) $[-1,2]$	(D) [-1,1]	D
			On. Co.		
			44.04		
			4		

MATHEMATICS (Fresh) - I

Note: Time allowed for section B and C is 2 hours and 40 minutes.

Marks: 50

Attempt any TEN Parts out of the following. Each Part carries equal marks. H.

i. Separate the real and imaginary parts of the complex number
$$\left(\frac{1+\sqrt{3} i}{1-\sqrt{3} i}\right)^{-2}$$

ii. Determine whether
$$(1+2i)$$
 is a solution of $Z^2 - 2Z + 5 = 0$

iii. If
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$
, then show that $(A^{-1})^{-1} = A$.

iv. If
$$A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 5 & 6 \\ 2 & 3 & 4 \end{bmatrix}$$
, then show that $(A + A^{i})$ is symmetric.
v. Let $u = i + 2j - 3k$ and $v = zi - j + 2k$, then find $\begin{bmatrix} u - 2v \\ u - 2v \end{bmatrix}$

v. Let
$$u = i + 2j - 3k$$
 and $v = zi - j + 2k$, then find $\begin{bmatrix} u - 2v \end{bmatrix}$

vi. The first three terms in Arithmetic sequence are 20, 16.5 and 13 respectively. Find the
$$15^{th}$$
 term, i.e. a_{tt} .

vii. For any two number "a" and "b", show that
$$G^2 = A \times H$$
.

viii. Find the sum:
$$1^2 + 3^2 + 5^2 + 7^2 + \dots + 99^2$$

ix. Find n, such that
$${}^{n^2}C_2 = 30 {}^nC_1$$
.

x. Let
$$P(A) = \frac{2}{5}$$
, $P(B) = \frac{2}{5}$ and $P(AUB) = \frac{1}{2}$ then find $P(A \cap B)$

xi. Show by Mathematical induction that
$$1^3 + 2^3 + 3^3 + \dots + n^3 = (\frac{n(n+1)}{2})^3$$

xii. Show that
$$\tan\left(\frac{3\pi}{2} + \theta\right) = -\cot\theta$$

xiii. Determine whether the function
$$f(x) = \left(\frac{x-1}{x+1}\right)$$
 is even or odd or neither.

Marks: 30

Note: Attempt any THREE questions of the following. Each question carries equal Marks.

III. (a) Show that
$$\sin(\alpha+\beta) + \sin(\alpha-\beta) = 2\sin(\alpha) + \cos(\beta)$$

(b) Prove that
$$\left(\sin\frac{\alpha}{2} + \cos\frac{\alpha}{2}\right)^2 = 1 + \sin\alpha$$

IV. (a) Solve the triangle ABC, in which
$$\alpha = 35^{\circ}$$
, $\beta = 70^{\circ}$ and $C = 115$

V. (a) Find the domain and range of
$$\sin 2x$$
.

(b) Draw the graph of the function
$$y = 2\sin x$$
, when $0 \le x \le 2\pi$.

VI. (a) Show that
$$\begin{bmatrix} bc & ca & ab \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^4 \end{bmatrix}$$

(b) If
$$y = \frac{1}{2^2} + \frac{1 \times 3}{2!} \cdot \frac{1}{2^4} + \frac{1 \times 3 \times 5}{3!} \cdot \frac{1}{2^6} + \dots$$
, then show that $y^2 + 2y - 1 = 0$