SECTION-A Attempting all MCQs is compulsory. This paper along with the OMR sheet must be returned to the superintendent after due time. If the circle $\bigcirc \bigcirc \bigcirc$	M	MATHEMATICS (Fine: 20 Minutes ultiple Choice Questions Mark for each	resh) 9 th Marks:		Stud	No. of the ent		ok
The point (3, 4) is located in 2^{ab} Quadrant 2^{ab} Quadran	iote:) Att	empting all MCQs is compulsor I the circle ⊗©©©, which or	e is correct w	SECTION:	sheet must be	returned to the s	unerioten	dent after due time
The point (-3, 4) is located in 2 nd Quadrant	•	In simplified form $\frac{1}{a+b}$ +	$\frac{b}{a^2 - b^2} = -$	•		.,		
© i Quadrant $x \ge 5$ means ○ $x > 5$	· .			$\frac{a}{a^2-b^2}$	©	$\frac{b}{a^2-b^2}$	0	$\frac{b+a}{a^2-b^2}$
L.C.M of (u^2-a+1) and (a^3+1) is	,	○ I ^H Quadrant · · · · · · · · · · · · · · · · ·	•	2 nd Quadrant	© 3 ¹	Quadrant	· (D) 4	^h Quadrant
					• • · · · · · · · · · · ·	> 5 or x = 5	©	x > 5 or x = 5
■ 10		_			•	a^3+1	©	$a^2 + a = 1$
The simplified form of (a^2b) (a^2b) is \(\text{a} \ a^2b^2 \) \(\text{a} \ b)^2 \) \(\text{b} \ b)^2 \) \(\text{a} \ b)^2 \) \(\text{b} \ d \ d \ b)^2 \) \(\text{b} \ d \ d \ b)^2 \) \(\text{b} \ d \ d \ b)^2 \) \(\text{b} \ d \ d \ d \ b)^2 \) \(\text{b} \ d \ d \ d \ b)^2 \) \(\text{b} \ d \ d \ d \ b)^2 \) \(\text{b} \ d \ d \ d \ d \ d \ d \ d \ d \ d \		• 10	(°	2	©	π'	0	5
		• 6	•	-6	©	-6i	©	~6 <i>i</i>
If $A = \begin{pmatrix} 1 & 3 \\ 2 & -2 \end{pmatrix}$, than A^{-1} equals				$\frac{(a b)^2}{}$	Q u	4 b ²	©	a ⁴ b
		If $A = \begin{pmatrix} 1 & 3 \\ 2 & -2 \end{pmatrix}$, than A^-	¹ equals		10/			
The standarad form of 3.65×10^{-4} is			•		© <u>1</u>	$\begin{pmatrix} -2 & 3 \\ 2 & 2 \end{pmatrix}$	©	$ \begin{array}{ccc} 1 & -2 & -3 \\ 8 & -2 & -2 \end{array} $
The standarad form of 3.65×10^{-4} is		In a right angle triangle one ar	igle is					•
		<u> </u>	•	•	· •	270°	©	360°
Icess than Icess than Icess than Icess than Icess than Icess than or equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal to the following arc the sides of a right angle triangle? Ice equal the following arc the sides of a right angle triangle? Ice equal the following arc the sides of a right a			×10 ⁻⁴ is		· ©	36500	©	0.0365
 ♠ rectangle		A less than	(5 (0)	greater than	©			as than or equal to
in the conjugate of $(2-\sqrt{3})$ is	?. .			-		paralellogram	•	trapezium
© zero polynomial © irrational expression The conjugate of $(2-\sqrt{3})$ is © $\frac{1}{2+\sqrt{3}}$ © $\frac{1}{2+\sqrt{3}}$ Which of the following are the sides of a right angle triangle?		A.		'				
		o zero polynomial	-					
$2 + \sqrt{3}$ 5. Which of the following are the sides of a right angle triangle?	١.	The conjugate of $(2-\sqrt{3})$	is	·				
			•	$-2 + \sqrt{3}$	0	$\frac{1}{2+\sqrt{3}}$	•	$2+\sqrt{3}$
	5,	_	e sides of a rig			'	•	

MATHEMATICS (Fresh) 9th

Note: Time allowed for Section B and C is 2 hours and 40 minutes.

SECTION "B"

Marks: 36

I. Attempt any NINE Parts out of the following. Each Part carries equal marks.

i. Solve the system of linear equations x+2y=-13 and 3x+6y=11 by using inversion method.

ii. Simplify
$$\left(\frac{x^p}{x^q}\right)^{p+q} \cdot \left(\frac{x^q}{x^r}\right)^{q+r} \cdot \left(\frac{x^r}{x^p}\right)^{r+p}$$

- iii. Simplify $\frac{2.83}{(6.52)^2}$ with the help of logarithm.
- iv. When (a+b+c)=5 and (ab+bc+ca)=-2, then find the value of $(a^2+b^2+c^2)$
- v. If $x = 5 2\sqrt{6}$, find the values of $x^2 + \frac{1}{x^2}$.
- vi. Factorize $(x^4 + 64)$
- vii. Using factor theorem, factorize the polynomial $(x^3 4x^2 3x + 18)$
- viii. Find the H.C.F of (x^2-x-6) and (x^2-2x-3) by division method
- ix. For what value of K the expression $\left(4x^4 + 32x^2 + 96x + \frac{128}{x^2} + \frac{k}{x^4}\right)$ will become a perfect square.
- x. Find the solution set of $\frac{1}{x-1} = \frac{2}{x-2}$ and verify the answers.
- xi. Construct a table for four pair of values satisfying the equation x + y = 4
- xii. Let $C = \begin{pmatrix} 7 & -3 \\ 2 & -1 \end{pmatrix}$. $D = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$, Prove that $(C+D)^t = C^t + D^t$

SECTION "C"

Marks: 24

Note: Attempt any THREE questions of the following. Each question carries equal Marks.

- 1. Show that the points A(-1,2), B(7,5) and C(2,-6) are the vertices of right angle triangle.
- II. Prove that in a parallelogram, the opposite sides and opposite angles are congruent. Also diagonals of the parallelogram bisect each other.
- III. If the internal bisector of an angle of a triangle divides the side opposite to it in the ratio of the singles of the sides containing the angles.
- IV. Construct a ΔKLM , such that $m \overline{KL} = 5.5$ cm, $m < K = 60^{\circ}$ and $m < L = 45^{\circ}$. Also draw their altitudes and verify their concurrency