PHYSICS	(Fresh)	٠	P-I	
Times 20 Minutes			A.F	

Multiple Choice Questions 01 Mark for each

Marks: 18

aper	Code
9)

Student	Roll No. of the Student			
---------	----------------------------	--	--	--

Serial No. Of the Answer Book

SECTION-A

	4		SECTION-A	<u> </u>			ę.
Note:	tempting all MCQs is compulsory. This paper	alone	with the OMR she	et must	be returned to the super	intend	ent after due time.
2) Fil	l the circle 👀 🏵 🍳, which one is correct w	ith bl	ue or black ball poir	ıt, in thi	s sheet as well as in sep		
3) If 1	more than one circle in the OMR sheet is filled	d then	no credit will be gi	ven to s	uch answer.	··	
1.	In RLC series AC circuit $\frac{17}{k}$ and $\frac{17}{k}$	are _				•	
	Out of phase by 360°	B	Out of Phase by	90	Out of phase by 180°	0	In phase
2.	When charge partical enter perpendi	icula	r to megnetic fie	ld, the	path followed by it	is	1
	A helix		A circle	©	Straight line	0	Ellipse
.3.	During experiment the function of g	alvai	no meter is photo	electi	ic effect is to		current.
		ⅎ	increase	0	decrease		detect
4.	Mass equivalent of 931 MeV energy						
	6.02×10 ⁻²³ kg		1.766×10 ⁻²⁷ kg	<u>©</u>	$2.67 \times 10^{-27} kg$	($6.02 \times 10^{-27} kg$
5.	The phase difference between the cu	irren	t and voltage at r	esinan	ce is	<u>_</u> .	•
,	• 0	B	π	©	$-\pi$	6	$\pi/2$
6.	The SI unit of Electric field intensity	/ is	0				
	 Coulomb per meter 	B	Joul per meter	. ©	Coulomb per Second		Volt per meter
7.	Inject printer works on the principle	of .	70.		<u>.</u> •		,
	Gauss's law .	₿	'Ohm's law		Electrostatics	©	Faraday's law
8	In choke coil the reactance X_L and i	esist	ance R are				
	$\lambda_{L} = R$	$^{f B}$	$X_L \ll R$		$X_L \gg R$	0	$X_L = \infty$
9.	The positron has charge which is in	mag	nitude equal to the	ie chai	rge on		
	(A) Electron	⊕	Proton		β-particle	•	All
10.	Which of the following remains con	stant	t in step-up trans	former	?		
	Voltage	₿	Current	•	Power	0	Heat
11.	When a wire is stretched and its radi	us be	ecome $r/2$, then	its res	sistance will be		<u>.</u>
	• 16R	X	4R	©	2R	(0
12.	If both the length and radius of the r	od a	re doubled, then	the me	odulus of alasticity-v	vill _	· · .
	(increase	•	decrease		doubled		remains the same
13.	The Atomic model based on classic	al as	well as plank's o	juantu	m theory was devel	oped	<u> </u>
	Ruther ford				Max-Plank		Bohr
14.	A wire is stretched to double of its l	engtl	h, the strain is: 🚉				•
	2	-	1	©	zero.	(0.5
15.	I testa is equal to		<u> </u>				
	• 10 ¹ Gauss	W	10 ⁻⁴ Gauss he order of	©	2 × 10 ⁻⁴	0	2 × 10 ⁴
16.	The drift velocity of free electron is	of t	he order of		•	_	
	The drift velocity of free electron is $10^{-3}mr^{-1}$	ⅎ	10 ⁻⁴ ms ⁻¹	<u> </u>	10 ⁻⁸ ms ⁻¹	0	10 ⁸ ms ⁻¹
17.	The depletion region has:			-		-	•
	Neither holes nor electrons		Holes only	©	Electrons only	0	Both holes & electrons
18.	The energy of electron in the exited						
	→ 13.6 ev	_	-3.4 ev	•	- 0 . 85 ev	0	-1.5 ev

PHYSICS (Fresh) P-II

Note: Time allowed for section B and C is 2 hours and 40 minutes.

SECTION "B"

Marks: 40

•			
II.	Atte	npt any TEN Parts out of the following. Each Part carries equal marks.	
	i.	What is the difference between Volt and Electron Volt (ev) and how they are related with each other?	
	ii.	What is an equipotential line and equipotential surface?	
	iii.	What is steady current? Is it Matter, Energy or Both?	
	iv.	How does a current carrying coil behave like a bar magnet?	
	v.	How electromagnetic brake works? Explain.	
	vi.	Prove that the average power dissipated in resistance R over one complete cycle is $P = V_{rms} I_{rms}$	
	vii.	What is the stress-strain curve and define the plastic deformation?	
	viii.	What are the majority charge carrier in NPN and PNP Transistors?	
	ix.	Briefly describe Pair Production?	
~	х.	Write the general Mathematical form of Balmer, Lyman, Pashen and Brachett series.	
	xi.	What factors make a fusion reaction difficult to achieve.	
	xii,	Differentiate between inertial frame of reference and non-inertial frame of reference.	
	xiii.	What is thermoelectric e.m.f. and Seebeek Effect?	-
	-	Marker 27	
		SECTION "C" Marks: 27	
Note	e: At1	empt any THREE questions of the following. Each question carries equal Marks.	
ш.	(a).	State and Explain Coulomb's Law. Do include the case when the charge is placed in dielectrics.	5
	(b)	A Metallic sphere of diameter 40 cm carries a charge of 600 μ C. Find the Electric field intensity at;	
		(i) A distance of 1.5 cm from the centre of the sphere and (ii) at the surface of the sphere.	4
IV.	(a)	What is the galvanometer and how it is converted into Ammeter and Volt meter?	5
k K	(b)	A wire carrying 5A current and has length of 10 cm between the poles of a magnet is kept at ar	1
13.5		angle of 60° to the uniform field of 0.6 T. Find the force acting on the wire?	4
٧.	(a)	State and Explain Nuclear fusion reaction for both the cycles.	5
	(b)	A particle of mass 5.0 mg moves with speed of 8 ms^{-1} . Calculate de Broglie wavelength.	4
VI.	_(a)	What are the main feature of Photoelectric effects? Discuss the failure of classical physics and	
		success of photon concept in explaining this effect	5

(b) The temperature of human body is $35^{\circ}C$. Then what is " $\lambda_{\text{\tiny blac}}$ " for which the radiation is emitted.