	V	'ersio	n No			ROLL NUMBER							WERMEDIATE AND	SEC			
	7	0.	9	1								BBOARD TO THE					
	<u></u>		0	0	0	0	(0) (0)	0			A WHAT HAVE	DUCATION			
	1	1	1		1	1	(D O	1	1			SLAMABAD				
	2	2	2	2	2	2	(2 2	2	2	Α	01	4 NI-				
	3	3	3	3	3	3		3 3	3	3	Answe	er Si	neet No				
	4	4	4	4	4	4	(4 4	4	4							
	(5)	(5)	5	(5)	(5)	(5)		5 (5)	5	(5)	Sign. o	of C	andidate				
	6	6	6	6	6	6	(6	6	6							
		7	7	7	7	7		7 7	7	7	a •	. e I					
	8	8	8	8	8	8		8 8	8	8	Sign. o	or in	vigilator	Maria Dick Colonia Nation (Miles			
	9	9		9	9	9	(9 9	9	9							
sect hand Dele	tion are	e to be ver to verwriti	answ the	vered Centre	All parts of this on this page and Superintendent. wed. Do not use		SE	CTIO	N – A	(Ma	ISSC-I arks 17) Vinutes		ں صفحہ پر دے کر ناظم مر کڑکے ہے۔لیڈ چنمل کا استعال ممنوع ہے۔				
Fill	the r	eleva	nt bu	ıbble	against each	ques	tior	1:					ن دائره کوپر کریں۔	کئے درسٹ	ہر سوال کے سامنے دیے گ		
1.					n present in 500, , C/=35.5, O=16)	g of	9	7.3×1	024	0	3.61×10 ²⁴	0	2.45×10 ²⁴	0	36.8×10 ²³		
2.	MgS made Sulph	. How from our by	w mar 1 24 <i>g</i>	ny gra of react	In Sulphur to produms of MgS can Mg with excession $Mg+S \rightarrow M$	n be s of	0	35g	Lis	0	56g	0	58.3 <i>g</i>	0	12 <i>g</i>		
3.	Whick functi	n of on?	the f	ollowi	ng is NOT a s	state	0	Pressu	ıre	8	Volume	0	Temperature	0	Work		
4.					is $4 \times 10^{15} Hz$, the $626 \times 10^{-34} Js)$	en its	0	26.5×	$10^{-18}J$	0	26.5×10 ⁻¹⁹ J	0	26.5×10 ¹⁹ J	\bigcirc	26.5×10 ¹⁸ J		
5.	havin	g larg	e ator	nic ni	r's law, when mu umber will be use roduce X-rays of:		0	Longe		0	Low wave number	0	Shorter wavelength	\bigcirc	Low energy		
6.		No. c ≡ <i>CH</i>		ma ar	d Pi bonds in Eti	hyne	0	2 Sign Pi bon	na and 3 ds	0	3 Sigma and 2 Pi bonds	0	5 Sigma and 3 Pi bonds	0	3 Sigma and 5 Pi bonds		
7.	Ident		e spe	cies	with maximum	bond	0	CH_4		0	NH ₃	0	H_2O	0	H_2S		
8.	In lea	ıd stoı	age b	attery	electrolyte is:		0	30% <i>F</i>	ICI	0	30% <i>HNO</i> ₃	0	30%H ₂ SO ₄	\bigcirc	30% <i>HBr</i>		
9.	exoth temp	ermic eratur	react	ion, w syster	elier's Principle, i hat should be do n to obtain maxi ?	ne to	0	Kept L	-OW	0	Kept High	0	Kept Same	0	Temperature has no effect		
10.	Acco	rding	to Grate of	aham	s law which one sion? (M. Wt, S		0	SO_2		0	SO_3	0	H_2S	\bigcirc	SCl_2		
						+											

															3.1				
11.	Electric curren one direction b of crystal, such	out not thro	ugh oth	er dire	nite in ection	0	Allotropy	/	0	Anis	otropy	/	0	sotro	ру	(O An	morph	ism
12.	Which one is o	conductor b	ut not r	nallab	ole?	0	Iron		\bigcirc	Grap	hite		0	Silver		() co	pper	
13.	Which of the does NOT dep	following Coends on Te	oncent	ration ture?	Units	0	Molarity		0	Mola	lity		0	$\frac{v}{v}$		() %	$\frac{m}{v}$	
14.	Which of the vapor pressure	following very at 50°C?	vill con	tain Io	west	0	CH_4		0	HF			0	NH ₃		($\supset H$	₂ O	
15.	A solution of I	HCI having	g <i>pH</i> =	4 will	l be:	0	0.4 <i>M</i>		0	4.0	M		0	0.000)1 <i>M</i>	() 0.0	0004 N	1
16.	$K_c = 0.04$ at $PCl_{5(g)} \rightleftharpoons$ K_p of the real where ($R = 0$.	$PCl_{3(g)} + C$ ction will be	Cl _{2(g)} e:	action	0	0.04		0	2.37	,		0	0.64		() 0.4	40		
17.	In a mixture of SO_2 , SO_3 a following wing pressure according where molar $SO_3=80$, $CI_2=7$	nd Cl_2 gall have ording to Darmasses	ases, w highe alton's l	hich o st p Law?	of the	7	CO_2		0	SO_2			0	SO_3		() ci	2	
SUP	PLEMENTARY T						.60/	1											
Ato	omic No 1 nbol H	2 3 He Li	4 Be	5 B	6 C	7 N	1		A	11 Na	12 Mg	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	19 K	20 Ca
	ss No 1	4 7	9	11	12	14				23	24	27	28	31	32	35.5	40	39	40
										.6									
							—1HA-I 2	209-70	91 (HA	A)	7								

ROLL NUMBER

CHEMISTRY HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

NOTE: Answer any FOURTEEN parts from Section 'B' and attempts any TWO questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION - B (Marks 42)

Answer any FOURTEEN parts from the following. All parts carry equal marks. Q. 2

 $(14 \times 3 = 42)$

- Why actual yield is always less than theoretical yield? Write three arguments. (i)
- (ii) $C + O_2 \longrightarrow CO_7$

 $\Delta H = -393 \, kJ \, / \, mol$

 $H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$

 $\Delta H = -285.8 \, kJ \, / \, mol$

 $CH_3COOH + 2O_2 \longrightarrow 2CO_2 + 2H_2O$

 $\Delta H = -875 \, kJ \, / \, mol$

Deduce the value of standard enthalpy of formation of acetic acid.

- (iii) How X-rays are produced? Discuss according to Moseley's law.
- By using formula of radius derived by Bohr, how it can be proved that size of ${}^4_2He^{1+}$ is larger than (iv) that of ${}_{3}^{6}Li^{2+}$? $r = \frac{\varepsilon_{o}h^{2}n^{2}}{}$
- Write three defects of valence bond theory? (v)
- Give two causes for deviation of gases from ideality. (vi)
- (vii) Write three differences between Sigma and Pi bond.
- What is meant by molar heat of fusion and molar heat of vaporization? Why ΔH_{ν} is always greater (viii) than ΔH_c ?
- Boiling point increases continuously in hydrides of group IV from CH_4 to SnH_4 with the increase in (ix)atomic size of central atom. Which forces are responsible for this regular change and why?
- Describe briefly Lattice energy in two ways with suitable example. (x)
- Briefly explain with chemical equation, why: (xi)
 - NH₄Cl is acidic
- NaCl is neutral (ii)
- CH,COONa is basic (iii)
- Consider the following reaction $H_2 + Br_2 \Longrightarrow 2HBr$ if concentrations of H_2 , Br_2 and HBr are 0.5M, (xii) 0.3M and 0.1M respectively at equilibrium then calculate value of K_c .
- How relative lowring of vapour pressure helps to determine the molar mass of non-volatile and non-(xiii) electrolyte solute in a dilute solution? Relationship of relative lowring of V.P is $\frac{\Delta P}{P^0} = X_2$
- What is freezing point of a solution containing 30g of Sucrose $C_{12}H_{22}O_{11}$ dissolved in 50g of (xiv) water? ($K_{fof water} = 1.86$)
- Differentiate between ΔE and ΔH . Under what conditions ΔH and ΔE will be equal? (XV)
- Briefly describe the construction and working of standard hydrogen electron (SHE). (xvi)
- What is galvanizing? Why is it called sacrificial corrosion? (xvii)
- (xviii) Write thermochemical equation for the following:
 - Standard enthalpy of formation of CH_3COCH_3 is -248.1 kJ/mol(a)
 - Standard enthalpy of combustion of C_8H_{18} is -5512kJ/mol(b)
 - Standard enthalpy of atomization of Cl_2 is +121kJ/mol
- What is bond energy? Why bond energy of HF is greater than that of H-I? (xix)
- Enlist two factors that affect London Dispersion Forces. Why London Dispersion Forces are stronger in (xx)Radon (Rn) than Helium (He) in noble gases?

SECTION - C (Marks 26)

Note: Attempt any TWO questions. All questions carry equal marks.

 $P + HNO_3 + H_2O \longrightarrow H_3PO_4 + NO$

 $(2 \times 13 = 26)$

- How catalyst increases the rate of reaction? Explain its action with suitable example along with the Q. 3 a. (07)graph. Describe the types of Catalysis.
 - Derive Vander Wall's equation for real gases and also derive the units of 'a' an 'b'. (06)b. (06)
- Q. 4 Balance the following redox equations with given methods: a.
 - $Cr_2O_7^{-2} + Cl^- \longrightarrow Cr^{+3} + Cl_2$ Ion electron method (in acidic media)
- (07)Explain buffer, its types and composition and buffer action with one suitable example. b.
- Q. 5 Explain the quantitative aspects of freezing point depression and prove that ΔT_{ℓ} is inversely a. proportional to molar mass of solute. (07)
 - (i) A small piece of Al metal having a volume of 2.50cm3 is reacted with excess of HCl. What is the b. weight of H_2 liberated? The density of Al is $2.70g cm^{-3}$. $2Al + 6HCl \longrightarrow 2AlCl_3 + 3H_2$
 - (ii) In a particular experiment 0.3g of H_2 gas was obtained. Calculate percentage yield of this reaction.

Oxidation number method

SUPPLEMENTARY TABLE

OCI I LIMIT	TITE	TAT I	LULI	4																
Atomic No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Symbol	Н	He	Li	Be	В	C	N	0	F	Ne	Na	Mg	Al	Si	P	S	C1	Ar	K	Ca
Mass No	1	4	7	9	11	12	14	16	19	20	23	24	27	28	31.	32	35.5	40	39	40

		versio	on No				R	OLL	NUMB	ER			TERMEDIATE AN	0 500
	3	0	9	1									a de la composición dela composición de la composición de la composición de la composición dela composición dela composición dela composición de la composición de la composición dela composición de la composición dela c	PART E
	0	(0	0		0	0	0) (1)	0	0		THE STATE OF THE S	BUCATO COLOR
	1	1	1			1	1	1) ①	1	1		SLAMABA	n's contract of the contract o
	2	2	2	2		2	2	2	2	2	2	0		
		3	3	3		3	3	(3)	3	3	3	Answ	er Sheet No	
	4	4	4	4		4	4	4	(4)	4	4			
	(5)	(5)	5	(5)		(5)	(5)	(5)) (5)	(5)	(5)	Sign.	of Candidate	
	6	6	6	6		6	6	6	6	6	6			
	7	7	7	7		7	7	7	7	7	7			
	8	8	8	8		8	8	8	8	8	8	Sign.	of Invigilator	and or any analysis of the state of the stat
	9	9		9		9	9	9	9	9	9			
sec han Del	tion ar	e to b ver to verwrit	e answ the	vered o Centre	All parts of on this page Superintend wed. Do not	and lent.	(SEC	CTION	I – A	(Ma	ISSC—I arks 17) Vinutes	۔ لیڈر پٹنس کا استعال ممنوع ہے۔	حصنہ اڈل لازی ہے۔ اس کے جوابات اس کریں۔کاٹ کردوبارہ کیسنے کی اجازت نمیں ہے
Fill	the r	eleva	int bu	ıbble	against e	ach c	luesi	tion:	l				، دائزه کو پر کریں۔۔	ہر موال کے سامنے دیے گئے در ست
1.	to for	m 36g	ofw		en molecules $H_{\rm 2}O$):	s requ	ired		2.408×	10 ²⁴	0	24.08×10 ²⁴	1.204×10 ²⁴	6.02×10 ²³
2.	The lines		s of B	almer	series wave	e num	nber () ı	J.V	40	, ()	I.R	Visible	Microwaves
3.	Whic	h of pers is	the f	ollowir r rect f	ng sets of or an electro	quan on?	tum (O ;	n = 2, l $m = 0$	=0,		n=3, l=1, m=1	$\bigcap_{m=1}^{n=3, l=2, m=1}$	$\bigcap_{m=2}^{n=4, l=1, m=2}$
4.	Hybri	idizati	on of I	3erylliı	um in <i>BeCl₂</i>	, will l	pe: () ·	SP³		0	SP ²	SP	○ dSP²
5.	Whic will o	h one nly sh	of th	ie folk inslatio	owing gas r onal motion	molec ?	ules		H_2		0	NH ₃	<u>Не</u>	○ CO ₂
6.	Acco	rding	to Kin	etic M	olecular The	eory:		O -	$v \propto \sqrt{m}$		0	v ∝ m	$\bigcirc \nu \propto \sqrt{\frac{1}{m}}$	$v \propto \frac{1}{m}$
7.	Osmon:	otic p	ressui	re (π)) does NO	Г dep	end	○ l	Molarity		0	Universal gas constant	Temperature	Radius
8.	Equil	librium	n cons	stants	$K_c = K_p$, λ	when	Δn	<u> </u>	1		0	-1	Zero	<u></u> −2
9.					constant, la		PK_a	O :	Strong		0	Weak	Moderate	Water soluble
						*						Ē		

Symbol H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K C	and the same of the																				30-1-2		
11. Independent of reactions in: 12. Which of the following gases will be most CO_2 H_2 N_2 N_3 13. $\Delta H = \Delta E + P \Delta V$ is formula of: 14. Which of the following relationship is $\Delta H_v > \Delta H_f$ $\Delta H_f > \Delta H_f$ $\Delta H_s > \Delta H_f$ $\Delta H_s > \Delta H_f$ 15. Oxidation state of O' in O' in O' is: 16. Which of the following has strongest O' in the following has strongest O' intermolecular forces of attraction? 17. Lattice energy may also be called: 18. Affinity energy O' Crystal energy O' Book O	10.	VVhich of the	he foll	owing	g is ar	n acid	lic salt?)	0	NaHC	CO ₃	0	NF.	H_4Cl		0	CH ₃ (COON	Ia' (0	K_2SC	O ₄	
13. $\Delta H = \Delta E + P \Delta V$ is formula of: Enthalpy Work Surrounding Internal energy 14. Which of the following relationship is $\Delta H_v > \Delta H_f$ $\Delta H_f > \Delta H_v$ $\Delta H_s > \Delta H_f$ $\Delta H_s > \Delta H_f$ Incorrect? 15. Oxidation state of 'O' in KO_2 is: -1 -2 -4 $-\frac{1}{2}$ 16. Which of the following has strongest $H_{2(g)}$ $Cl_{2(g)}$ $I_{2(s)}$ $CH_{4(g)}$ 17. Lattice energy may also be called: Affinity energy $Crystal$ energy	11.						endent	to	0	Zero o reactio	rder ons	0				0							
14. Which of the following relationship is $\triangle H_{v} > \triangle H_{f}$ $\triangle H_{f} > \triangle H_{v}$ $\triangle H_{s} > \triangle H_{f}$ \triangle	12.	Which of i	the fo at -1	llowir 0° <i>C</i>	ng ga ?	ses w	vill be r	nost	0	CO_2		0	H_2				N_2			0	NH ₃		
15. Oxidation state of 'O' in KO_2 is: -1 -2 -4 $-\frac{1}{2}$ 16. Which of the following has strongest intermolecular forces of attraction? $H_{2(g)}$ $Cl_{2(g)}$ $I_{2(s)}$ $CH_{4(g)}$ 17. Lattice energy may also be called: Affinity energy Crystal energy Bond energy energy SUPPLEMENTARY TABLE Atomic No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 2 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 2 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 2 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 2 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 2 3 3 3 5 5 40 3 3 5 5 40 3 3 5 5 40 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 3 5 5 40 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 3 5 5 40 3 3 5 5 40 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 5 5 40 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 18 5 10 10 10 10 10 10 10 10 10 10 10 10 10	13.	$\Delta H = \Delta E$	+ <i>P</i> ∆1	√ is f	ormu	la of:				Enthal	ру	0	Wo	rk		0	Surro	undin	g (0	Interr	nal er	nergy
16. Which of the following has strongest intermolecular forces of attraction? $H_{2(g)} \qquad Cl_{2(g)} \qquad I_{2(s)} \qquad CH_{4(g)}$ 17. Lattice energy may also be called: $Affinity energy \qquad Crystal energy \qquad Bond energy \qquad Ionization energy$ $SUPPLEMENTARY TABLE$ Atomic No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	14.	Which of incorrect	the	follo	owing	rela	ntionship	p is	0	$\Delta H_{\nu} >$	$\rightarrow \Delta H_f$		ΔH	$H_f > \Delta$	H_{ν}	0	ΔH_s	> ΔH	ſ	0	ΔH_s	> Δ <i>I</i>	H_{ν}
17. Lattice energy may also be called: Affinity energy Crystal energy Bond energy Indication energy SUPPLEMENTARY TABLE Atomic No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 Symbol H He Li Be B C N O F Ne Na Mg Al Si P S CI Ar K C Symbol H He Li Be B C N O F Ne Na Mg Al Si P S CI Ar K C Symbol H He Li Be B C N O F Ne Na Mg Al Si P S CI Ar K C Symbol H He Li Be B C N O F Ne Na Mg Al Si P S CI Ar K C Symbol H He Li Be B C N O F Ne Na Mg Al Si P S CI Ar K C Symbol H He Li Be B C N O F Ne Na Mg Al Si P S CI Ar K C Symbol H He Li Be B C N O F Ne Na Mg Al Si P S CI Ar K C Symbol H Si P S CI Ar K C Sy	15.	Oxidation	state	of ' <i>O</i>	' in <i>1</i>	$\langle O_2 \rangle$ is	s:		0	-1		0	-2			0	-4			0	$-\frac{1}{2}$		
17. Lattice energy may also be called: Affinity energy Crystal energy Bond energy energy SUPPLEMENTARY TABLE Atomic No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 Symbol H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K C	16.	Which of intermolec	the cular fo	follo	wing of att	has ractio	stron n?	igest	0	$H_{2(g)}$		0	Cl_2	2(g)		0	$I_{2(s)}$			0	CH_4	(g)	
Atomic No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 Symbol H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K C	17.	Lattice en	ergy n	nay a	lso be	e calle	ed:		0	Affinity	energ	JV ()	Cry	vstal e	nergy	0	Bond	enerç	Эy	0			
Atomic No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 Symbol H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K C	SUPI	PLEMENTA	RY TA	BLE							9	0.											
	Ato Sym	mic No abol	1 H	2 He	Li	Ве	В	C	N	0	F	Ne	Na	Mg	Al	Si	Р	S	CI		Ar	К	20 Ca 40

----1HA-I 2209-3091 (L) -----

ROLL NUMBER

Q. 2

CHEMISTRY HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

NOTE: Answer any FOURTEEN parts from Section 'B' and attempts any TWO questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION - B (Marks 42) Answer any FOURTEEN parts from the following. All parts carry equal marks.

 $(14 \times 3 = 42)$

- The liquid $\it CHBr_3$ has a density of $2.89\,g$ / $\it cm^3$. What volume of this liquid should be measured to contain a total of 4.8×10^{24} molecules of *CHBr*₃ (M.Wt, C=12, H=1, Br=80)
- Point out the three defects of Bohr's model. (ii)
- How dipole moment help to determine the polarity of molecules? Apply this concept to determine the (iii) nature of CO_2 and Cis-1, 2-dichloro ethene.
- Predict and draw the shape and bond angles of following molecules on the basis of VSEPR theory: (iv)
 - $SnCl_2$ (ii) H,S
- Briefly explain azimuthal quantum number. How it helps to determine number of e^- in a subshell? (v)
- Prove that absolute temperature of a gas is the measure of average kinetic energy of its (vi) molecules. $K \cdot E \propto T$
- How the molar mass and density of a gas can be determined with the help of general gas equation? (vii)
- Why butane is gas at room temperature while hexane is liquid? (viii)
- Differentiate between Isomorphism and polymorphism with suitable examples. (ix)
- Describe electron sea theory. How it explains the properties of metals? (x)
- $K_c = 6 \times 10^{-1}$ at $500^{\circ}C$ Predict the direction in which the system will shift to $N_2 + 3H_2 \rightleftharpoons 2NH_3$ (xi) attain equilibrium when concentrations of H_2 , N_2 and NH_3 are $1.0\times10^{-2}\,M$, $1.0\times10^{-3}\,M$, $1.0\times10^{-3}\,M$
- Calculate the $\,pH\,$ of a buffer when molar concentrations of $N\!H_4O\!H$ and $N\!H_4Cl$ are $1.0M\,$ and $0.1M\,$ (xii) respectively. PK_b of NH_bOH is 4.75.
- Explain with chemical equation why aqueous solution of: (xiii)
 - NH_4Cl is acidic
- K_2CO_3 is basic (ii)
- Na_2SO_4 is neutral (iii)
- $R = K[H_2][NO]^2$ if this reaction occurs Consider the following reaction $2H_1 + 2NO \longrightarrow N_2 + 2H_2O$ (xiv) in two steps then write its mechanism and predict the reaction intermediate.
- What is diffusion? Also state Graham's law of effusion and diffusion with mathematical expression. (xv)
- Calculate the molality of 30% $\frac{w}{w}$ solution of fructose ($C_6H_{12}O_6$). (xvi)
- Define system, surroundings and boundary with a suitable example. (xvii)
- Predict the feasibility of the following reaction $Sn + Mg^{2+} \longrightarrow Sn^{+2} + Mg$ $E^{\circ}_{Sn} = -0.14V$, $E^{\circ}_{Mg} = -2.38V$ (xviii)
- Distillation under reduced pressure is often used for purification of sensitive liquids. Describe the (xix)process giving reason.
- Apply n+l rule and pick the orbital with the lower energy from each of the given pairs: (XX)
- 2p,3s
- (iii)

SECTION - C (Marks 26)

Attempt any TWO questions. All questions carry equal marks. Note:

 $(2 \times 13 = 26)$

(06)

- Consider the following reaction $CH_4 + H_2O \longrightarrow CO + 3H_2$ Q. 3 What is the amount of CO produced if 30g of CH_4 and 50g of H_2O is used
 - (i) In an experiment 22g of CO were produced, what is percentage yield? (ii)
 - Describe construction of lead storage battery and reactions taking place during charging and b. (07)
- What is orbital hybridization? Explain the structure of $HC \equiv CH$, BF_3 and CH_4 on the basis of Q. 4 a. (06)
 - State Le-Chatelier's principle. Briefly discuss the effect of increase in pressure, increase in b. concentration of SO_2 , increase in temperature and increase in NO_2 catalyst when following reaction is

(07)at equilibrium. $2SO_2 + O_2 \stackrel{NO_{2(g)}}{\longleftarrow} 2SO_{3(g)} \Delta H = -256 \, kJ \, / \, mol$ (06)

Draw complete Born Haber cycle for the formation of MgO from the following data. Q. 5 a. ΔH_f^0 of $MgO = -602\,kJ$ / mol , ΔH_s^0 of $Mg = 150\,kJ$ / mol , $\Delta H_{I.E}^0$ of $Mg^{2+} = 2180\,kJ$ / mol , ΔH_{ai}^{0} of $O_{2}=24\,kJ/mol$, $\Delta H_{E.A}^{0}$ of $O^{-1}=-141kJ/mol$, $\Delta H_{E.A}^{0}$ of $O^{-2}=878\,kJ/mol$

Why addition of solute increases the boiling point of solution? Explain quantitative aspects of elevation b. of boiling point and prove that ΔT_b is inversely proportional to molar mass of solute. (07)

DDI EMENTARY TARI E

SUPPLEME	NTA	RYT	ABLI	Ľ				,		,		10		T	1.5	16	17	10	10	20
Atomic No Symbol Mass No	1 H -1	He 4	3 Li 7	4 Be 9	5 B 11	6 C 12	7 N 14	8 O 16	9 F 19	10 Ne 20	11 Na 23	12 Mg 24	13 Al 27	Si 28	P 31	S 32	Cl 35.5	Ar 40	K 39	Ca 40