| | V | 'ersio | n No | | | ROLL NUMBER | | | | | | | WERMEDIATE AND | SEC | | | | |----------------------|----------------------|-------------------------------|------------------------|-----------------------|---|--------------|------|------------------|----------------|-----|-------------------------------|---|---|----------------------------------|---------------------------|--|--| | | 7 | 0. | 9 | 1 | | | | | | | | BBOARD TO THE | | | | | | | | <u></u> | | 0 | 0 | 0 | 0 | (| 0 |) (0) | 0 | | | A WHAT HAVE | DUCATION | | | | | | 1 | 1 | 1 | | 1 | 1 | (| D O | 1 | 1 | | | SLAMABAD | | | | | | | 2 | 2 | 2 | 2 | 2 | 2 | (| 2 2 | 2 | 2 | Α | 01 | 4 NI- | | | | | | | 3 | 3 | 3 | 3 | 3 | 3 | | 3 3 | 3 | 3 | Answe | er Si | neet No | | | | | | | 4 | 4 | 4 | 4 | 4 | 4 | (| 4 4 | 4 | 4 | | | | | | | | | | (5) | (5) | 5 | (5) | (5) | (5) | | 5 (5) | 5 | (5) | Sign. o | of C | andidate | | | | | | | 6 | 6 | 6 | 6 | 6 | 6 | (| 6 | 6 | 6 | | | | | | | | | | | 7 | 7 | 7 | 7 | 7 | | 7 7 | 7 | 7 | a • | . e I | | | | | | | | 8 | 8 | 8 | 8 | 8 | 8 | | 8 8 | 8 | 8 | Sign. o | or in | vigilator | Maria Dick Colonia Nation (Miles | | | | | | 9 | 9 | | 9 | 9 | 9 | (| 9 9 | 9 | 9 | | | | | | | | | sect
hand
Dele | tion are | e to be
ver to
verwriti | answ
the | vered
Centre | All parts of this on this page and Superintendent. wed. Do not use | | SE | CTIO | N – A | (Ma | ISSC-I
arks 17)
Vinutes | | ں صفحہ پر دے کر ناظم مر کڑکے
ہے۔لیڈ چنمل کا استعال ممنوع ہے۔ | | | | | | Fill | the r | eleva | nt bu | ıbble | against each | ques | tior | 1: | | | | | ن دائره کوپر کریں۔ | کئے درسٹ | ہر سوال کے سامنے دیے گ | | | | 1. | | | | | n present in 500,
, C/=35.5, O=16) | g of | 9 | 7.3×1 | 024 | 0 | 3.61×10 ²⁴ | 0 | 2.45×10 ²⁴ | 0 | 36.8×10 ²³ | | | | 2. | MgS
made
Sulph | . How
from
our by | w mar
1 24 <i>g</i> | ny gra
of
react | In Sulphur to produms of MgS can Mg with excession $Mg+S \rightarrow M$ | n be
s of | 0 | 35g | Lis | 0 | 56g | 0 | 58.3 <i>g</i> | 0 | 12 <i>g</i> | | | | 3. | Whick
functi | n of
on? | the f | ollowi | ng is NOT a s | state | 0 | Pressu | ıre | 8 | Volume | 0 | Temperature | 0 | Work | | | | 4. | | | | | is $4 \times 10^{15} Hz$, the $626 \times 10^{-34} Js)$ | en its | 0 | 26.5× | $10^{-18}J$ | 0 | 26.5×10 ⁻¹⁹ J | 0 | 26.5×10 ¹⁹ J | \bigcirc | 26.5×10 ¹⁸ J | | | | 5. | havin | g larg | e ator | nic ni | r's law, when mu
umber will be use
roduce X-rays of: | | 0 | Longe | | 0 | Low wave number | 0 | Shorter
wavelength | \bigcirc | Low energy | | | | 6. | | No. c
≡ <i>CH</i> | | ma ar | d Pi bonds in Eti | hyne | 0 | 2 Sign
Pi bon | na and 3
ds | 0 | 3 Sigma and 2
Pi bonds | 0 | 5 Sigma and 3
Pi bonds | 0 | 3 Sigma and 5
Pi bonds | | | | 7. | Ident | | e spe | cies | with maximum | bond | 0 | CH_4 | | 0 | NH ₃ | 0 | H_2O | 0 | H_2S | | | | 8. | In lea | ıd stoı | age b | attery | electrolyte is: | | 0 | 30% <i>F</i> | ICI | 0 | 30% <i>HNO</i> ₃ | 0 | 30%H ₂ SO ₄ | \bigcirc | 30% <i>HBr</i> | | | | 9. | exoth
temp | ermic
eratur | react | ion, w
syster | elier's Principle, i
hat should be do
n to obtain maxi
? | ne to | 0 | Kept L | -OW | 0 | Kept High | 0 | Kept Same | 0 | Temperature has no effect | | | | 10. | Acco | rding | to Grate of | aham | s law which one
sion? (M. Wt, S | | 0 | SO_2 | | 0 | SO_3 | 0 | H_2S | \bigcirc | SCl_2 | | | | | | | | | | + | 3.1 | | | | | |-----|--|---|-------------------------------|------------------------|-------------------|--------|--------------|--------|------------|----------|----------|----------|----------|-----------------|-------------|----------|-------------|----------------|----------| | 11. | Electric curren
one direction b
of crystal, such | out not thro | ugh oth | er dire | nite in
ection | 0 | Allotropy | / | 0 | Anis | otropy | / | 0 | sotro | ру | (| O An | morph | ism | | 12. | Which one is o | conductor b | ut not r | nallab | ole? | 0 | Iron | | \bigcirc | Grap | hite | | 0 | Silver | | (|) co | pper | | | 13. | Which of the does NOT dep | following Coends on Te | oncent | ration
ture? | Units | 0 | Molarity | | 0 | Mola | lity | | 0 | $\frac{v}{v}$ | | (|) % | $\frac{m}{v}$ | | | 14. | Which of the vapor pressure | following very at 50°C? | vill con | tain Io | west | 0 | CH_4 | | 0 | HF | | | 0 | NH ₃ | | (| $\supset H$ | ₂ O | | | 15. | A solution of I | HCI having | g <i>pH</i> = | 4 will | l be: | 0 | 0.4 <i>M</i> | | 0 | 4.0 | M | | 0 | 0.000 |)1 <i>M</i> | (|) 0.0 | 0004 N | 1 | | 16. | $K_c = 0.04$ at $PCl_{5(g)} \rightleftharpoons$ K_p of the real where ($R = 0$. | $PCl_{3(g)} + C$ ction will be | Cl _{2(g)}
e: | action | 0 | 0.04 | | 0 | 2.37 | , | | 0 | 0.64 | | (|) 0.4 | 40 | | | | 17. | In a mixture of SO_2 , SO_3 a following wing pressure according where molar $SO_3=80$, $CI_2=7$ | nd Cl_2 gall have ording to Darmasses | ases, w
highe
alton's l | hich o
st p
Law? | of the | 7 | CO_2 | | 0 | SO_2 | | | 0 | SO_3 | | (|) ci | 2 | | | SUP | PLEMENTARY T | | | | | | .60/ | 1 | | | | | | | | | | | | | Ato | omic No 1
nbol H | 2 3
He Li | 4
Be | 5
B | 6
C | 7
N | 1 | | A | 11
Na | 12
Mg | 13
Al | 14
Si | 15
P | 16
S | 17
Cl | 18
Ar | 19
K | 20
Ca | | | ss No 1 | 4 7 | 9 | 11 | 12 | 14 | | | | 23 | 24 | 27 | 28 | 31 | 32 | 35.5 | 40 | 39 | 40 | | | | | | | | | | | | .6 | | | | | | | | | | | | | | | | | | —1HA-I 2 | 209-70 | 91 (HA | A) | 7 | | | | | | | | | ROLL NUMBER # CHEMISTRY HSSC-I Time allowed: 2:35 Hours Total Marks Sections B and C: 68 NOTE: Answer any FOURTEEN parts from Section 'B' and attempts any TWO questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly. #### SECTION - B (Marks 42) Answer any FOURTEEN parts from the following. All parts carry equal marks. Q. 2 $(14 \times 3 = 42)$ - Why actual yield is always less than theoretical yield? Write three arguments. (i) - (ii) $C + O_2 \longrightarrow CO_7$ $\Delta H = -393 \, kJ \, / \, mol$ $H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$ $\Delta H = -285.8 \, kJ \, / \, mol$ $CH_3COOH + 2O_2 \longrightarrow 2CO_2 + 2H_2O$ $\Delta H = -875 \, kJ \, / \, mol$ Deduce the value of standard enthalpy of formation of acetic acid. - (iii) How X-rays are produced? Discuss according to Moseley's law. - By using formula of radius derived by Bohr, how it can be proved that size of ${}^4_2He^{1+}$ is larger than (iv) that of ${}_{3}^{6}Li^{2+}$? $r = \frac{\varepsilon_{o}h^{2}n^{2}}{}$ - Write three defects of valence bond theory? (v) - Give two causes for deviation of gases from ideality. (vi) - (vii) Write three differences between Sigma and Pi bond. - What is meant by molar heat of fusion and molar heat of vaporization? Why ΔH_{ν} is always greater (viii) than ΔH_c ? - Boiling point increases continuously in hydrides of group IV from CH_4 to SnH_4 with the increase in (ix)atomic size of central atom. Which forces are responsible for this regular change and why? - Describe briefly Lattice energy in two ways with suitable example. (x) - Briefly explain with chemical equation, why: (xi) - NH₄Cl is acidic - NaCl is neutral (ii) - CH,COONa is basic (iii) - Consider the following reaction $H_2 + Br_2 \Longrightarrow 2HBr$ if concentrations of H_2 , Br_2 and HBr are 0.5M, (xii) 0.3M and 0.1M respectively at equilibrium then calculate value of K_c . - How relative lowring of vapour pressure helps to determine the molar mass of non-volatile and non-(xiii) electrolyte solute in a dilute solution? Relationship of relative lowring of V.P is $\frac{\Delta P}{P^0} = X_2$ - What is freezing point of a solution containing 30g of Sucrose $C_{12}H_{22}O_{11}$ dissolved in 50g of (xiv) water? ($K_{fof water} = 1.86$) - Differentiate between ΔE and ΔH . Under what conditions ΔH and ΔE will be equal? (XV) - Briefly describe the construction and working of standard hydrogen electron (SHE). (xvi) - What is galvanizing? Why is it called sacrificial corrosion? (xvii) - (xviii) Write thermochemical equation for the following: - Standard enthalpy of formation of CH_3COCH_3 is -248.1 kJ/mol(a) - Standard enthalpy of combustion of C_8H_{18} is -5512kJ/mol(b) - Standard enthalpy of atomization of Cl_2 is +121kJ/mol - What is bond energy? Why bond energy of HF is greater than that of H-I? (xix) - Enlist two factors that affect London Dispersion Forces. Why London Dispersion Forces are stronger in (xx)Radon (Rn) than Helium (He) in noble gases? ## SECTION - C (Marks 26) #### Note: Attempt any TWO questions. All questions carry equal marks. $P + HNO_3 + H_2O \longrightarrow H_3PO_4 + NO$ $(2 \times 13 = 26)$ - How catalyst increases the rate of reaction? Explain its action with suitable example along with the Q. 3 a. (07)graph. Describe the types of Catalysis. - Derive Vander Wall's equation for real gases and also derive the units of 'a' an 'b'. (06)b. (06) - Q. 4 Balance the following redox equations with given methods: a. - $Cr_2O_7^{-2} + Cl^- \longrightarrow Cr^{+3} + Cl_2$ Ion electron method (in acidic media) - (07)Explain buffer, its types and composition and buffer action with one suitable example. b. - Q. 5 Explain the quantitative aspects of freezing point depression and prove that ΔT_{ℓ} is inversely a. proportional to molar mass of solute. (07) - (i) A small piece of Al metal having a volume of 2.50cm3 is reacted with excess of HCl. What is the b. weight of H_2 liberated? The density of Al is $2.70g cm^{-3}$. $2Al + 6HCl \longrightarrow 2AlCl_3 + 3H_2$ - (ii) In a particular experiment 0.3g of H_2 gas was obtained. Calculate percentage yield of this reaction. Oxidation number method ### SUPPLEMENTARY TABLE | OCI I LIMIT | TITE | TAT I | LULI | 4 | | | | | | | | | | | | | | | | | |-------------|------|-------|------|----|----|----|----|----|----|----|----|----|----|----|-----|----|------|----|----|----| | Atomic No | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | Symbol | Н | He | Li | Be | В | C | N | 0 | F | Ne | Na | Mg | Al | Si | P | S | C1 | Ar | K | Ca | | Mass No | 1 | 4 | 7 | 9 | 11 | 12 | 14 | 16 | 19 | 20 | 23 | 24 | 27 | 28 | 31. | 32 | 35.5 | 40 | 39 | 40 | | | | versio | on No | | | | R | OLL | NUMB | ER | | | TERMEDIATE AN | 0 500 | |-------------------|----------------|-----------------------------|---------------|----------------------------|---|--------------|--------|----------|----------------------|------------------|---------|-------------------------------|--|--| | | 3 | 0 | 9 | 1 | | | | | | | | | a de la composición dela composición de la composición de la composición de la composición dela composición dela composición dela composición de la composición de la composición dela composición de la composición dela c | PART E | | | 0 | (| 0 | 0 | | 0 | 0 | 0 |) (1) | 0 | 0 | | THE STATE OF S | BUCATO COLOR | | | 1 | 1 | 1 | | | 1 | 1 | 1 |) ① | 1 | 1 | | SLAMABA | n's contract of the o | | | 2 | 2 | 2 | 2 | | 2 | 2 | 2 | 2 | 2 | 2 | 0 | | | | | | 3 | 3 | 3 | | 3 | 3 | (3) | 3 | 3 | 3 | Answ | er Sheet No | | | | 4 | 4 | 4 | 4 | | 4 | 4 | 4 | (4) | 4 | 4 | | | | | | (5) | (5) | 5 | (5) | | (5) | (5) | (5) |) (5) | (5) | (5) | Sign. | of Candidate | | | | 6 | 6 | 6 | 6 | | 6 | 6 | 6 | 6 | 6 | 6 | | | | | | 7 | 7 | 7 | 7 | | 7 | 7 | 7 | 7 | 7 | 7 | | | | | | 8 | 8 | 8 | 8 | | 8 | 8 | 8 | 8 | 8 | 8 | Sign. | of Invigilator | and or any analysis of the state stat | | | 9 | 9 | | 9 | | 9 | 9 | 9 | 9 | 9 | 9 | | | | | sec
han
Del | tion ar | e to b
ver to
verwrit | e answ
the | vered o
Centre | All parts of
on this page
Superintend
wed. Do not | and
lent. | (| SEC | CTION | I – A | (Ma | ISSC—I
arks 17)
Vinutes | ۔ لیڈر پٹنس کا استعال ممنوع ہے۔ | حصنہ اڈل لازی ہے۔ اس کے جوابات اس
کریں۔کاٹ کردوبارہ کیسنے کی اجازت نمیں ہے | | Fill | the r | eleva | int bu | ıbble | against e | ach c | luesi | tion: | l | | | | ، دائزه کو پر کریں۔۔ | ہر موال کے سامنے دیے گئے در ست | | 1. | to for | m 36g | ofw | | en molecules $H_{\rm 2}O$): | s requ | ired | | 2.408× | 10 ²⁴ | 0 | 24.08×10 ²⁴ | 1.204×10 ²⁴ | 6.02×10 ²³ | | 2. | The lines | | s of B | almer | series wave | e num | nber (|) ı | J.V | 40 | ,
() | I.R | Visible | Microwaves | | 3. | Whic | h of
pers is | the f | ollowir
r rect f | ng sets of
or an electro | quan
on? | tum (| O ; | n = 2, l $m = 0$ | =0, | | n=3, l=1, m=1 | $\bigcap_{m=1}^{n=3, l=2, m=1}$ | $\bigcap_{m=2}^{n=4, l=1, m=2}$ | | 4. | Hybri | idizati | on of I | 3erylliı | um in <i>BeCl₂</i> | , will l | pe: (|) · | SP³ | | 0 | SP ² | SP | ○ dSP² | | 5. | Whic
will o | h one
nly sh | of th | ie folk
inslatio | owing gas r
onal motion | molec
? | ules | | H_2 | | 0 | NH ₃ | <u>Не</u> | ○ CO ₂ | | 6. | Acco | rding | to Kin | etic M | olecular The | eory: | | O - | $v \propto \sqrt{m}$ | | 0 | v ∝ m | $\bigcirc \nu \propto \sqrt{\frac{1}{m}}$ | $v \propto \frac{1}{m}$ | | 7. | Osmon: | otic p | ressui | re (π) |) does NO | Г dep | end | ○ l | Molarity | | 0 | Universal gas constant | Temperature | Radius | | 8. | Equil | librium | n cons | stants | $K_c = K_p$, λ | when | Δn | <u> </u> | 1 | | 0 | -1 | Zero | <u></u> −2 | | 9. | | | | | constant, la | | PK_a | O : | Strong | | 0 | Weak | Moderate | Water soluble | | | | | | | | * | | | | | | Ē | | | | Symbol H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K C | and the same of the | 30-1-2 | | | |--|---------------------|-----------------------|-----------------|-----------------------|----------------|--------------------------|-------------|-------|---|--------------------|--------------------------|-------|------------|----------------|-----------|----|-------------------|-------|-------|---|-----------------|----------------|----------------| | 11. Independent of reactions in: 12. Which of the following gases will be most CO_2 H_2 N_2 N_3 13. $\Delta H = \Delta E + P \Delta V$ is formula of: 14. Which of the following relationship is $\Delta H_v > \Delta H_f$ $\Delta H_f > \Delta H_f$ $\Delta H_s > \Delta H_f$ $\Delta H_s > \Delta H_f$ 15. Oxidation state of O' in O' in O' is: 16. Which of the following has strongest O' in the following has strongest O' intermolecular forces of attraction? 17. Lattice energy may also be called: 18. Affinity energy O' Crystal energy O' Book O | 10. | VVhich of the | he foll | owing | g is ar | n acid | lic salt? |) | 0 | NaHC | CO ₃ | 0 | NF. | H_4Cl | | 0 | CH ₃ (| COON | Ia' (| 0 | K_2SC | O ₄ | | | 13. $\Delta H = \Delta E + P \Delta V$ is formula of: Enthalpy Work Surrounding Internal energy 14. Which of the following relationship is $\Delta H_v > \Delta H_f$ $\Delta H_f > \Delta H_v$ $\Delta H_s > \Delta H_f$ $\Delta H_s > \Delta H_f$ Incorrect? 15. Oxidation state of 'O' in KO_2 is: -1 -2 -4 $-\frac{1}{2}$ 16. Which of the following has strongest $H_{2(g)}$ $Cl_{2(g)}$ $I_{2(s)}$ $CH_{4(g)}$ 17. Lattice energy may also be called: Affinity energy $Crystal$ | 11. | | | | | | endent | to | 0 | Zero o
reactio | rder
ons | 0 | | | | 0 | | | | | | | | | 14. Which of the following relationship is $\triangle H_{v} > \triangle H_{f}$ $\triangle H_{f} > \triangle H_{v}$ $\triangle H_{s} > \triangle H_{f}$ \triangle | 12. | Which of i | the fo
at -1 | llowir
0° <i>C</i> | ng ga
? | ses w | vill be r | nost | 0 | CO_2 | | 0 | H_2 | | | | N_2 | | | 0 | NH ₃ | | | | 15. Oxidation state of 'O' in KO_2 is: -1 -2 -4 $-\frac{1}{2}$ 16. Which of the following has strongest intermolecular forces of attraction? $H_{2(g)}$ $Cl_{2(g)}$ $I_{2(s)}$ $CH_{4(g)}$ 17. Lattice energy may also be called: Affinity energy Crystal energy Bond energy energy SUPPLEMENTARY TABLE Atomic No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 2 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 2 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 2 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 2 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 2 3 3 3 5 5 40 3 3 5 5 40 3 3 5 5 40 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 3 5 5 40 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 3 5 5 40 3 3 5 5 40 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 5 5 40 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 3 5 5 6 7 8 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 18 5 10 10 10 10 10 10 10 10 10 10 10 10 10 | 13. | $\Delta H = \Delta E$ | + <i>P</i> ∆1 | √ is f | ormu | la of: | | | | Enthal | ру | 0 | Wo | rk | | 0 | Surro | undin | g (| 0 | Interr | nal er | nergy | | 16. Which of the following has strongest intermolecular forces of attraction? $H_{2(g)} \qquad Cl_{2(g)} \qquad I_{2(s)} \qquad CH_{4(g)}$ 17. Lattice energy may also be called: $Affinity energy \qquad Crystal energy \qquad Bond energy \qquad Ionization energy$ $SUPPLEMENTARY TABLE$ Atomic No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10 | 14. | Which of incorrect | the | follo | owing | rela | ntionship | p is | 0 | $\Delta H_{\nu} >$ | $\rightarrow \Delta H_f$ | | ΔH | $H_f > \Delta$ | H_{ν} | 0 | ΔH_s | > ΔH | ſ | 0 | ΔH_s | > Δ <i>I</i> | H_{ν} | | 17. Lattice energy may also be called: Affinity energy Crystal energy Bond energy Indication energy SUPPLEMENTARY TABLE Atomic No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 Symbol H He Li Be B C N O F Ne Na Mg Al Si P S CI Ar K C Symbol H He Li Be B C N O F Ne Na Mg Al Si P S CI Ar K C Symbol H He Li Be B C N O F Ne Na Mg Al Si P S CI Ar K C Symbol H He Li Be B C N O F Ne Na Mg Al Si P S CI Ar K C Symbol H He Li Be B C N O F Ne Na Mg Al Si P S CI Ar K C Symbol H He Li Be B C N O F Ne Na Mg Al Si P S CI Ar K C Symbol H He Li Be B C N O F Ne Na Mg Al Si P S CI Ar K C Symbol H Si P S CI Ar K C Sy | 15. | Oxidation | state | of ' <i>O</i> | ' in <i>1</i> | $\langle O_2 \rangle$ is | s: | | 0 | -1 | | 0 | -2 | | | 0 | -4 | | | 0 | $-\frac{1}{2}$ | | | | 17. Lattice energy may also be called: Affinity energy Crystal energy Bond energy energy SUPPLEMENTARY TABLE Atomic No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 Symbol H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K C | 16. | Which of intermolec | the cular fo | follo | wing
of att | has
ractio | stron
n? | igest | 0 | $H_{2(g)}$ | | 0 | Cl_2 | 2(g) | | 0 | $I_{2(s)}$ | | | 0 | CH_4 | (g) | | | Atomic No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 Symbol H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K C | 17. | Lattice en | ergy n | nay a | lso be | e calle | ed: | | 0 | Affinity | energ | JV () | Cry | vstal e | nergy | 0 | Bond | enerç | Эy | 0 | | | | | Atomic No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 Symbol H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K C | SUPI | PLEMENTA | RY TA | BLE | | | | | | | 9 | 0. | | | | | | | | | | | | | | Ato
Sym | mic No
abol | 1
H | 2
He | Li | Ве | В | C | N | 0 | F | Ne | Na | Mg | Al | Si | Р | S | CI | | Ar | К | 20
Ca
40 | ----1HA-I 2209-3091 (L) ----- ROLL NUMBER Q. 2 # CHEMISTRY HSSC-I Time allowed: 2:35 Hours Total Marks Sections B and C: 68 NOTE: Answer any FOURTEEN parts from Section 'B' and attempts any TWO questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly. # SECTION - B (Marks 42) Answer any FOURTEEN parts from the following. All parts carry equal marks. $(14 \times 3 = 42)$ - The liquid $\it CHBr_3$ has a density of $2.89\,g$ / $\it cm^3$. What volume of this liquid should be measured to contain a total of 4.8×10^{24} molecules of *CHBr*₃ (M.Wt, C=12, H=1, Br=80) - Point out the three defects of Bohr's model. (ii) - How dipole moment help to determine the polarity of molecules? Apply this concept to determine the (iii) nature of CO_2 and Cis-1, 2-dichloro ethene. - Predict and draw the shape and bond angles of following molecules on the basis of VSEPR theory: (iv) - $SnCl_2$ (ii) H,S - Briefly explain azimuthal quantum number. How it helps to determine number of e^- in a subshell? (v) - Prove that absolute temperature of a gas is the measure of average kinetic energy of its (vi) molecules. $K \cdot E \propto T$ - How the molar mass and density of a gas can be determined with the help of general gas equation? (vii) - Why butane is gas at room temperature while hexane is liquid? (viii) - Differentiate between Isomorphism and polymorphism with suitable examples. (ix) - Describe electron sea theory. How it explains the properties of metals? (x) - $K_c = 6 \times 10^{-1}$ at $500^{\circ}C$ Predict the direction in which the system will shift to $N_2 + 3H_2 \rightleftharpoons 2NH_3$ (xi) attain equilibrium when concentrations of H_2 , N_2 and NH_3 are $1.0\times10^{-2}\,M$, $1.0\times10^{-3}\,M$, $1.0\times10^{-3}\,M$ - Calculate the $\,pH\,$ of a buffer when molar concentrations of $N\!H_4O\!H$ and $N\!H_4Cl$ are $1.0M\,$ and $0.1M\,$ (xii) respectively. PK_b of NH_bOH is 4.75. - Explain with chemical equation why aqueous solution of: (xiii) - NH_4Cl is acidic - K_2CO_3 is basic (ii) - Na_2SO_4 is neutral (iii) - $R = K[H_2][NO]^2$ if this reaction occurs Consider the following reaction $2H_1 + 2NO \longrightarrow N_2 + 2H_2O$ (xiv) in two steps then write its mechanism and predict the reaction intermediate. - What is diffusion? Also state Graham's law of effusion and diffusion with mathematical expression. (xv) - Calculate the molality of 30% $\frac{w}{w}$ solution of fructose ($C_6H_{12}O_6$). (xvi) - Define system, surroundings and boundary with a suitable example. (xvii) - Predict the feasibility of the following reaction $Sn + Mg^{2+} \longrightarrow Sn^{+2} + Mg$ $E^{\circ}_{Sn} = -0.14V$, $E^{\circ}_{Mg} = -2.38V$ (xviii) - Distillation under reduced pressure is often used for purification of sensitive liquids. Describe the (xix)process giving reason. - Apply n+l rule and pick the orbital with the lower energy from each of the given pairs: (XX) - 2p,3s - (iii) #### SECTION - C (Marks 26) Attempt any TWO questions. All questions carry equal marks. Note: $(2 \times 13 = 26)$ (06) - Consider the following reaction $CH_4 + H_2O \longrightarrow CO + 3H_2$ Q. 3 What is the amount of CO produced if 30g of CH_4 and 50g of H_2O is used - (i) In an experiment 22g of CO were produced, what is percentage yield? (ii) - Describe construction of lead storage battery and reactions taking place during charging and b. (07) - What is orbital hybridization? Explain the structure of $HC \equiv CH$, BF_3 and CH_4 on the basis of Q. 4 a. (06) - State Le-Chatelier's principle. Briefly discuss the effect of increase in pressure, increase in b. concentration of SO_2 , increase in temperature and increase in NO_2 catalyst when following reaction is (07)at equilibrium. $2SO_2 + O_2 \stackrel{NO_{2(g)}}{\longleftarrow} 2SO_{3(g)} \Delta H = -256 \, kJ \, / \, mol$ (06) Draw complete Born Haber cycle for the formation of MgO from the following data. Q. 5 a. ΔH_f^0 of $MgO = -602\,kJ$ / mol , ΔH_s^0 of $Mg = 150\,kJ$ / mol , $\Delta H_{I.E}^0$ of $Mg^{2+} = 2180\,kJ$ / mol , ΔH_{ai}^{0} of $O_{2}=24\,kJ/mol$, $\Delta H_{E.A}^{0}$ of $O^{-1}=-141kJ/mol$, $\Delta H_{E.A}^{0}$ of $O^{-2}=878\,kJ/mol$ Why addition of solute increases the boiling point of solution? Explain quantitative aspects of elevation b. of boiling point and prove that ΔT_b is inversely proportional to molar mass of solute. (07) DDI EMENTARY TARI E | SUPPLEME | NTA | RYT | ABLI | Ľ | | | | , | | , | | 10 | | T | 1.5 | 16 | 17 | 10 | 10 | 20 | |--------------------------------|--------------|------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|----------------|----------------|----------------|----------|---------|---------|------------|----------|---------|----------| | Atomic No
Symbol
Mass No | 1
H
-1 | He 4 | 3
Li
7 | 4
Be
9 | 5
B
11 | 6
C
12 | 7
N
14 | 8
O
16 | 9
F
19 | 10
Ne
20 | 11
Na
23 | 12
Mg
24 | 13
Al
27 | Si
28 | P
31 | S
32 | Cl
35.5 | Ar
40 | K
39 | Ca
40 |