Version No.				RO	LL N	UMBI	ER		1	TERMEDIATE AND OF						
	7	1	1	1	ļ]		BOARD STATE OF THE	A COME	\
	0		0	- (0)	·	0	0	0	0	0	0			THE WAY	EDUCATION	/
	1		0			1	1	1	1	1	1			SLAMAB	ADan	
	2	2	2	2		2	2	2	2	2	2			*		
	3	3	3	3		3	3	3	3	3	3	Answ	rer S	heet No		:
	4	4	4	4		4	4	4	4	4	4					
	(5)	(5)	<u>(5)</u>	<u>.</u> ⑤		(5)	(5)	(5)	(5)	(5)	(5)	Sign.	of C	andidate		
	6	6	6	6		6	6	6	6	6	<u>(6)</u>					
		7	.7	7		7	7	7	7	7	7					,
٠	3 :	(3)	8	(8)		(8)	8	8	8	8	8	Sign.	of Ir	nvigilator	<u> </u>	
	9	9	9	9		9	9	9	9	9	9					
sec har Del	ction are nded ov	to be er to erwriti	answ the 0	rered o Centre	All parts of to the horizontal thick the horizontal had been been to the horizontal the horizontal had been been been been been been been bee	and ent.	S	EC1	rion	- A	(Ma	HSSC–I arks 20) Minutes		سخہ پر دے کر ناظم مرکزکے ^ح لیڈ پن مل کا استعمال ممنوع ہے۔		, p. 5.
Fill	the re	leva	nt bu	bble a	against ea	ch qı	ıestic	on:						دائره کوپر کریں۔	یخ درست ۱	ر سوال کے سامنے دیے گ
1.	For a formul				z, all the f	ollowi	ng C) z =	= Z		0	$zz = z ^2$	0	$z^2 = \mid z \mid^2$	0	
2.					ets forms an on of multipli			1	t of rat		0	Set of integers	0	Set of natural numbers		Set of non- zero real numbers
3.	cricket respec	t and ctively hat is	d hoo . If the .the n	ckey e total i	of players the are 15 and number of players to	ind layers	13 is () 6		C	3	%	0	7	0	28
1.	If A is	s a ma owing	atrix of	f order alities i	3×4 , then vis TRUE?	which	of C) AI ₃	, = A		0	$I_4A = A$	0	$AA' = I_4$	<u> </u>	$AI_4 = A$
j.	$\begin{vmatrix} 1 & 0 \\ 2 & -i \\ 3 & -2 \end{vmatrix}$	$\begin{vmatrix} 0 \\ 0 \\ i \end{vmatrix} =$					Ċ) 1			0	-1 .	0	i	0	-i
	If $f(x)$ and 2	is a l	polync $f(x)$	omial v	vith only two	roots	¹ C) x ² +	+ 3 <i>x</i> – 2	2	0	$x^2 + 3x + 2$		$x^2 - 3x + 2$		$x^2 - 3x - 2$
	If one then 5	root (of the 1) =	equat	tion $f(x) = 0$	is -	1, C	6			0	4	0	5	0	-6
	The pa	artial t	fractio	n of -	$\frac{1}{1-x^3}$ will be	e in th	ne C	$\frac{A}{1-z}$	$\frac{1}{x} + \frac{Bx}{1-x}$	$\frac{+C}{x^2}$	0	$\frac{A}{1-x} + \frac{Bx + C}{1+x+x^2}$	0	$\frac{A}{1-x} + \frac{Bx + C}{(1-x)^2}$	· ·	$\frac{A}{1-x} + \frac{B}{1-x+x^2}$
					e with gener		_	0			0	1	0	-1		2

10.	If b is a harmonic mean between -2 and 4 then $b=$	○ 8		_8	<u> </u>	O −1
11.	$\binom{8}{7} + \binom{8}{6} =$	O 72	2	48	<u>63</u>	
12.	If a fair die is rolled, then what is the probability that the top is an even number?	$\frac{1}{2}$		$\bigcirc \frac{1}{3}$	$\bigcirc \frac{1}{6}$	O 1
13.	Which of the following expressions is sum of the series $1-x+x^2-x^3+$	$f \bigcirc \overline{1}$	1 +x	$\bigcirc \frac{1}{1-x}$	$\int \sqrt{1+x}$	$\bigcirc \ \frac{1}{\sqrt{1-x}}$
14.	What is the length of the arc that subtends an angle of measure 60° at the centre of a circle with radius 6?		π	_ 2π	<u></u> 6π	π
15.	$\sin\left(\frac{7\pi}{6}\right) =$	O -	$\frac{\sqrt{3}}{2}$	$\bigcirc \frac{1}{2}$	$\bigcirc \frac{1}{2}$	$\bigcirc \frac{\sqrt{3}}{2}$
16.	Which of the following trigonometric expressions is identically equal to $1-\cos 2\theta$	O 2	$\cos^2 \theta$	\bigcirc $2\sin^2\theta$	$\bigcirc 2\sin^2 2\theta$	$\bigcirc 2\cos^2 2\theta$
17.	What is the primary period of $\tan\left(\frac{x}{3}\right)$?	32	π	$\bigcirc \frac{\pi}{3}$	$\bigcirc \frac{\pi}{2}$	$\bigcap_{i} \pi$
18.	The circumradius R of a triangle with sides a,b,c is equal to:	1	abc A	$\frac{abc}{4\Delta}$	$\bigcirc \frac{4abc}{\Delta}$	$\bigcirc \frac{4\Delta}{abc}$
19.	For what value of x , $tan(x-30^\circ) = \cot x$	O 9	0°	O 60°	120°	150°
20.	What is the solution of $\sec x = 2$ in the interval $[0,\pi]$?	0 {	$\left\{-\frac{\pi}{6}\right\}$	$\bigcirc \left\{ -\frac{\pi}{3} \right\}$	$\bigcirc \left\{\frac{\pi}{3}\right\}$	$\bigcirc \left\{ \frac{\pi}{6} \right\}$

----1HA-I 2211-7111 (HA)----

ROLL	NUMBE	R

MATHEMATICS HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

NOTE: Attempt any twelve parts from Section 'B' and any four questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly. Graph paper will be provided on request.

SECTION - B (Marks 48)

Attempt any TWELVE parts. All parts carry equal marks. Q. 2

 $(12 \times 4 = 48)$

- Simplify $\frac{9}{\sqrt{5}+\sqrt{-4}}$ in the form of a+bi
- If U = the set of the English alphabets, A and B are subsets of U, where $A = \{x \mid x \text{ is a vowel}\}$, (ii) $B = \{y \mid y \text{ is a consonant}\}\$, then verify the de Morgan's Laws (i) $(A \cup B)' = A' \cap B'$ (ii) $(A \cap B)' = A' \cup B'$
- Construct the truth table for the biconditional $p \leftrightarrow q$ (iii)
- If $A = \begin{bmatrix} 1 & 1+i & i \end{bmatrix}$, then find $(\overline{A})' A$ (iv)
- Without expansion, show that $\begin{vmatrix} 1 & 1 & 0 \end{vmatrix} = 0$ (v)
- Find the numerical value of k if polynomial $x^3 + kx^2 7x + 6$ has remainder 4 when divided by x 2(vi)
- Find the two consecutive numbers whose product is 72 (vii)
- If 5,8 are two arithmetic means between a and b, then find a and b(viii)
- Find 9th term of the hormonic sequence $-\frac{1}{5}, -\frac{1}{2}, -1, \dots$ (ix)
- Find values of n and r, when ${}^{n}C_{r} = 56$ and ${}^{n}P_{r} = 336$ (x)
- If x is so small that its square and higher powers can be neglected, then show that $\frac{\sqrt{4+x}}{(1+x)^3} \cong 2 \frac{23}{4}x$ (xi)
- Show that the area of a sector of a circular region of radius r is $\frac{1}{2}r^2\theta$, where θ is the (xii) circular measure of the central angle of the sector.
- If $\cot \theta = \frac{4}{2}$ and the terminal arm of the angle is not in the quadrant-I, If $\cot \theta = \frac{1}{3}$ and $\cot \theta = \frac{1}{3}$ find the values of $\cos \theta$ and $\csc \theta$. Show that $\frac{\cos(\pi + \theta)\sec(\pi - \theta)}{\sin^2(\pi + \theta)\cdot\tan(\pi - \theta)} = -\cot \theta \cdot \csc^2 \theta$. (xiii)
- (xiv)
- Prove that $\cot 2x = \frac{\sin x \sin 3x}{\cos 3x \cos x}$ (xv)
- Show that $\tan^{-1}\left(\frac{27}{11}\right) \tan^{-1}\frac{8}{19} = \frac{\pi}{4}$ (xvi)

SECTION - C (Marks 32)

Note: Attempt any FOUR questions. All questions carry equal marks. $(4 \times 8 = 32)$

- $x_1 + 4x_2 + 2x_3 = 2$ Solve the following system by reducing their augmented matrix to the echelon form $2x_1 + x_2 - 2x_3 = 9$ Q. 3 $2x_1 + 2x_2 - 2x_3 = 12$
- Solve the system of simultaneous equations: 3x + 2y = 7 $3x^2 = 25 + 2y^2$ Q. 4
- Resolve $\frac{2x^4}{(x+3)(x-2)^2}$ into partial fractions Q. 5 (a)
 - Find the sum S_n of the Arithmetic Series a+(a+d)+(a+2d)+...+(a+(n-1)d)
- Find the sum of the following series to n-terms: 1+(1+2)+(1+2+3)+...Q. 6
- If $2y = \frac{1}{2^2} + \frac{1 \cdot 3}{2!} \cdot \frac{1}{2^4} + \frac{1 \cdot 3 \cdot 5}{3!} \cdot \frac{1}{2^6} + \dots$ then prove that $4y^2 + 4y 1 = 0$
- Without using calculator/table prove that $\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ} = \frac{1}{16}$ Q. 8

	V	ersic/	n No			ROL	LN	JMB	ER		THE AMO OCC.				
	3	1	1	1										водина	AN ED
	0	(1)	0	0	0	@) (0	0	(1)	0			WHERE	S S S S S S S S S S S S S S S S S S S
	1		•		1	-		1	1	1	1			STAMABA	
	2	2	2	2	2			2	2	2	2	Answ	ver Si	heet No	
	0	3	3	3	3			3	3	3	3				-
	(4)	4	4	(4) (E)	4	4		4) 5)	4	(4)	4)5)	Sign	of C	andidate	
	(5) (6)	(5) (6)	(5) (6)	6	(5) (6)			<i>ව</i> හි	⑤	(5) (6)	6	olgii.	01 0	andidate	
	(A)	(T)	(7)	7	7			9 7	7	7	7)				
	(8)	(8)	(8)	(8)	(8)			<u> </u>	8	(8)	(8)	Sign.	of In	vigilator	
	9	9	9	9	9	(9		9	9	9	9				
sec har Del iea	etion are nded ov eting/ov d penci	e to be ver to verwriti I.	e answ the (ered of Centre not allo	All parts of this on this page and Superintendent. wed. Do not use		SE Tir	CT ne	ION	- A	(Ma	HSSC–I arks 20) Vinutes		۔ لیڈ پنٹل کا استعال ممنوع ہے۔	ھند اۆل لازی ہے۔ اس کے جوابات ای کریں۔ کاٹ کر دوبارہ لکھنے کی اجازت نہیں ہے
Fill	the re	eleva	nt bu	bble	against each	ques	stion	า:						. دائرہ کو پر کریں۔ 	ہر سوال کے سامنے دیے گئے درست
1.		<i>a</i> ≠	0, b	≠ O ,	ers such that a then which of olds:		9	ac >	> bc		0	$ac^2 > bc^2$	0	$\frac{c}{a} > \frac{c}{b}$	ac < bc
2.	What	is the	conve	erse o	f $p \rightarrow q$?		0	~ p	4	q	0	$q \rightarrow p$	0	$\sim q \rightarrow \sim p$	$\bigcirc p \leftrightarrow q$
3.	The s group	et of unde	non-z r the c	ero ra	ational numbers ion of:	is a	\bigcirc	Adc	lition		3	Subtraction	\bigcirc	Multiplication	Division
4.	For w		ilue of	fλis	the matrix $\begin{bmatrix} 1 & 0 \\ 2 & \lambda \\ 1 & 2 \end{bmatrix}$	0 0 3	0	1			0	0 101	0	3	
5.	If A is	s a sk	ew-sy	mmet	ric matrix then:		0	A =	A'		0	A = -A'	\bigcirc	$A = (\overline{A})^t$	$ A = -(\overline{A})^t $
6.		uotien	t is x	-2 a	is divided by x and the remaind		0	x ² -	- 4		0	x^2+4	0	$x^2 - 2$	$x^2 + 2$
7.	If w is	a cub ing eq	e roo luatior	t of ur	nity, then which o rue?	f the	0	1+1	w = 0		0	$1+w^2=0$	0	$w + w^2 = 0$	$1 + w + w^2 = 0$
8.	What	is the	partia	l fract	ions of $\frac{x^2 + 2x - 1}{x^2 - 1}$	1 ?	0	1+-	$\frac{1}{x+1}$	$\frac{1}{x-1}$	\bigcirc	$1 + \frac{1}{x - 1} - \frac{1}{x + 1}$	\circ	$1 - \frac{1}{x+1} - \frac{1}{x-1}$	
9.	Find th				the sequence w	nose	0	-1			0	13	0	5	11

10.	If $s_{\infty} = \frac{2}{3}$ and $a = \frac{2}{7}$ in an infinite geometric progression, then the common ratio is:	0	$-\frac{4}{7}$	0	$\frac{4}{7}$	$\bigcirc \frac{2}{7}$	$\bigcirc -\frac{2}{7}$
11.	For what values of x , the binomial expansion of $\left(1-\frac{x}{2}\right)^{-1}$ is convergent (valid)?	0	x > 2	0	x > 2	x < 2	$\bigcirc x < 1$
12.	What is radius of the circle whose part of arclength of measure 4 is with central angle $\frac{\pi}{2}$?	0	$\frac{8}{\pi}$	0	$\frac{4}{\pi}$	$\bigcirc \frac{2}{\pi}$	$\bigcirc \frac{\pi}{2}$
13.	If $D\left(-5,5\sqrt{2}\right)$ lies on the terminal side of θ , then find the value of $\tan\theta$	0	$-\frac{1}{\sqrt{2}}$	0	$\frac{1}{\sqrt{2}}$	○ √2	○ -√2
14.	If ${}^{n}C_{4} = {}^{n}C_{10}$, then $n =$	0	4	0	10	<u> </u>	O 6
15.	How many distinct three-digit numbers can be formed from the integers 1,2,3,4,5,6 if each digit is used at most once?	0	360	0	120	<u>20</u>	<u> </u>
16.	What is the middle term in the expansion of $(x+x^{-1})^{14}$	0	6th term	0	7 <i>th</i> term	8th term	9th term
17.	$\sin\left(\frac{3\pi}{2} - \alpha\right) =$	0	sina	0	$\cos \alpha$	\bigcap $-\sin \alpha$	$-\cos \alpha$
18.	What is the primary period of $\frac{\sin 2x}{1 + \cos 2x}$	0	2π	0	π	$\bigcirc \frac{\pi}{2}$	4π
19.	A ladder makes angle 30° with the wall of height $8m$. What is the length of the ladder?		16 <i>m</i>	0	8 <i>m</i>	○ 4 <i>m</i>	○ 12 <i>m</i>
20.	What is the value of $\sin^{-1}\left(-\frac{1}{2}\right)$?	0	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\bigcirc -\frac{\pi}{3}$	$\bigcirc \frac{\pi}{3}$
		_	—1HA-I 2211-31	11 (L))——		

RC)LL	NUI	MBE	R	
			- 1		

MATHEMATICS HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

NOTE: Attempt any twelve parts from Section 'B' and any four questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly. Graph paper will be provided on request.

SECTION - B (Marks 48)

Attempt any TWELVE parts. All parts carry equal marks. Q. 2

 $(12 \times 4 = 48)$

- Separate $\frac{(2-3i)^2}{1-i}$ into real and imaginary parts (i)
- Determine whether $p \to (q \to p)$ is a tautology, a contingency or an absurdity. (ii)
- (iii)
- If $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the domain and range of the relation $A = \{1, 2, 3, 4\}$, state the relation $A = \{1, 2, 3, 4\}$, state the relation $A = \{1, 2, 3, 4\}$, state the relation $A = \{1, 2, 3, 4\}$, state $A = \{1, 2, 3, 4$ (iv)
- Find the matrix A if $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} A = \begin{bmatrix} 0 & -3 & 8 \\ 3 & 3 & -7 \end{bmatrix}$ (v)
- Find the inverse of matrix $A = \begin{bmatrix} 2i & i \\ i & -i \end{bmatrix}$, hence show that $AA^{-1} = I_2$ (vi)
- If α, β are roots of $3x^2 2x + 4 = 0$, then find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ (vii)
- Resolve $\frac{3x-11}{(x+3)(x^2+1)}$ into partial fractions. (viii)
- If $y = 1 \frac{x}{2} + \frac{x^2}{4} \dots$, then show that $x = 2\left(\frac{1-y}{y}\right)$ (ix)
- Find values of n and r, when ${}^{n}C_{r}=10$ and ${}^{n}P_{r}=60$. (x)
- There are 9 green and 6 red balls in a box. A ball is drawn (taken out). What is the probability that (xi) (i) the ball is green (ii) the ball is red.
- Expand and simplify $(2+i)^4 (2-i)^4$ (xii)
- Find the remaining trigonometric functions if $\cos\theta = \frac{1}{2}$ and the terminal arm of angle heta is in quad-III. (xiii)
- Show that $\frac{\sin(\alpha \beta)}{\sin(\alpha + \beta)} = \frac{\tan \alpha \tan \beta}{\tan \alpha + \tan \beta}$ (xiv)
- Find the measure of smallest angle of the triangle whose sides are 16, 20 and 33(xv)
- Show that $2\cos^{-1}\frac{4}{5} = \sin^{-1}\frac{24}{25}$ (xvi)

<u>SECTION – C (Marks 32)</u>
Attempt any FOUR questions. All questions carry equal marks. Note:

 $(4 \times 8 = 32)$

Find the real and imaginary parts of the complex number $\frac{(\sqrt{3}-i)}{(\sqrt{3}+i)^5}$ Q. 3

$$x + y + z = 0$$

Find the value of λ for which the system $2x + y - \lambda z = 0$ has a non-trivial solution. Also solve the system for Q. 4 x + 2y - 2z = 0

- Resolve $\frac{x^2}{(x^2+4)(x+2)}$ into partial fractions **(b)** Prove that ${}^nC_k + {}^nC_{k-1} = {}^{n+1}C_k$ Q. 5
- Expand $(1-2x)^{\frac{1}{3}}$ to four terms and apply it to evaluate $(0.8)^{\frac{1}{3}}$ correct to three places of decimal. Q. 6
- If $\sin \alpha = \frac{4}{5}$ and $\sin \beta = \frac{12}{13}$, where $\frac{\pi}{2} < \alpha < \pi$ and $\frac{\pi}{2} < \beta < \pi$. Find (i) $\cos(\alpha + \beta)$ (ii) $\sin(\alpha \beta)$ Q. 7
- Show that $R = \frac{abc}{4A}$ Q. 8 (a)
 - Solve the equation $\sqrt{3} \tan x \sec x 1 = 0$ for its general solution