C. Marie				
10.	The points $A(2,5)$ and $B(3,-2)$ are the ends of a diameter of a circle, what is the radius of $2\sqrt{5}$ a circle?	○ 5√2	$\bigcirc \frac{5}{\sqrt{2}}$	$\bigcirc \frac{2}{\sqrt{5}}$
11.	A line cuts the x-axis at $(2,0)$ and y-axis at $(0,-4)$, then equation of a line is:	2x-y+4=0		
12.	Pair of lines represented by Homogeneous equation $ax^2 + 2hxy + by^2 = 0$ through origin $h^2 > ab$ will be real and coincident if:	$h^2 < ab$		$\bigcirc a+b=0$
13.	The solution set of $2y+5>4y-3$ $y>-4$	y>8	y < −4	
14.	The line $y = mx + c$ will be tangent to a circle $c = \pm m\sqrt{1 + a^2}$ $x^2 + y^2 = a^2 \text{ if:}$	$c = \pm a\sqrt{1 + m^2}$	$\bigcirc c = \pm m\sqrt{1 - a^2}$	$C = \pm a\sqrt{1 - m^2}$
15.	What is the Length of Latus Rectum of \bigcirc 5 Parabola $x^2 = 5y$	20	$\bigcirc \frac{5}{4}$	<u> </u>
16.	Which one of the following represents the graph of $9x^2 - 18x + 4y^2 + 8y - 23 = 0$?	O Parabola	○ Ellipse	
17.	The co-vertices of hyperbola $\frac{x^2}{16} - \frac{y^2}{4} = 1$ (0,±4) are:	(±2,0)	(±4,0)	(0,±2)
18.	The area of the triangle whose adjacent sides are $3\overline{i} + 4\overline{j}$ and $12\overline{i} + 9\overline{j}$ is:	$\bigcirc \frac{21}{2} \otimes \bigcirc$	$\bigcirc \frac{55}{2}$	$\bigcirc \frac{25}{2}$
19.	If vectors $\vec{v} = \vec{i} - 3\vec{j} + 4\vec{k}$ and $\vec{w} = \lambda \vec{i} + 9\vec{j} - 12\vec{k}$ are parallel then what is \bigcirc -3 the value of λ ?) 3	6 -9	9
20.	What is the volume of a parallelepiped if its	○ 3	<u> </u>	

----2HA-I 2211-8111 (HA) -----

ROLL NUMBER

MATHEMATICS HSSC-II

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

NOTE: Attempt any twelve parts from Section 'B' and any four questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet–B if required. Write your answers neatly and legibly. Graph paper will be provided on Demand.

SECTION - B (Marks 48)

 $(12 \times 4 = 48)$

Q. 2 Attempt any TWELVE parts. All parts carry equal marks.

(i) Let the real valued function, f and g defined by f(x) = 4x + 1 and $g(x) = 2x^2 + 5x$ obtain the expression for:

- a. f(g) b. g(f(x)) c. f(f(x)) d. g(f(x))
- (ii) Evaluate $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$
- (iii) Find $\frac{dy}{dx}$ if $x = \frac{3at}{1+t^3}$, $y = \frac{3at^2}{1+t^3}$
- (iv) If $y = \tan(4\tan^{-1}\frac{x}{4})$ show that $\frac{dy}{dx} = \frac{16(1+y^2)}{16+x^2}$
- (v) Use implicit rule to find the second derivative of the function $y = x + \tan^{-1} y$
- (vi) If $x = \cos \theta$; $y = \cos n\theta$ show that $(1 x^2)y_2 xy_1 + n^2y = 0$
- (vii) Find the area between the x-axis and the curve $f(x) = x^2 2x$ from x = 0 to x = 3
- (viii) Evaluate $\int x^3 \sqrt{1+x^2} \ dx$
- (ix) Find the point two-fifth of the way along the line segment A(-3,5) to B(5,3).
- (x) Find the angle θ form the lines L_1 and L_2 : $L_2: 5x-2y+2=0$
- (xi) Graph the feasible solution region of the system of linear inequalities by shading, also find the corner points. $3x + 7y \le 21$, $x y \le 3$, $x \ge 0$, $y \ge 0$
- (xii) Find the equation of parabola with focus (1,3) and vertex (4,3).
- (xiii) Find the equation of parabola, with Directrix, y = 3 and vertex (2,2).
- (xiv) Write the equation of ellipse with vertices at (-1,2) and (7,2) and 2 is the length of semi minor axis whereas major axis is horizontal.
- (xv) Prove that $\sin(\alpha \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta$
- (xvi) Find constant α so that vectors are coplaner $\vec{i} \alpha \vec{j} k$, $\vec{i} + \vec{j} + 2\vec{k}$ and $\alpha \vec{i} \vec{j} + \vec{k}$

Page 1 of 2 (Mathematics)

Note: Attempt any FOUR questions. All questions carry equal marks.

- **Q. 3** If θ is measured in radian then prove that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$
 - a. Draw the figure and give explanation.
 - b. Find area of triangles in figure.
 - c. From figure, see the inequalities of area and prove the theorem.
- Q. 4 Consider the function $f(x) = \sin x + \frac{1}{\sqrt{2}}\cos 2x$ where $x \in (0, 2\pi)$

find the extreme values of the functions in the interval $x \in (0,2\pi)$

- a. Find function f'(x)
- b. Find f''(x)
- c. Find the values of $x \in (0,2\pi)$ for which f(x) has maximum or minimum values
- d. Find possible extreme values of f(x)
- **Q. 5** Integrate $\int \frac{2x+5}{(x-3)^2(x^2-x+5)} dx$
 - a. Resolve $\frac{2x+5}{(x-3)^2(x^2-x+5)}$ into Partial fraction
 - b. After Partial Fraction Integrate the result $\int \frac{2x+5}{(x-3)^2(x^2-x+5)} dx$
- Q. 6 The diagram shows two Lines L_1 and L_2 passing through points:

 L_1 : joins A(2,7) and B(7,10) L_2 : joins C(1,1) and D(-5,3)

- a. Find the slope of lines L_1 and L_2
- b. Find the angle between the lines L_1 and L_2
- c. Find the equations of line L_1 and L_2
- d. Find the point of contact where line L_1 and L_2 intersect

- Q. 7 Find the maximum and minimum values of f and g defined as f(x) = 3x + 5y and g(x) = 6x + 8y under the constraints. $2x 3y \le 6$, $2x + y \ge 2$, $2x + 3y \le 12$, $x \ge 0$, $y \ge 0$
- Q. 8 Find the equations of tangent and normal lines at a point $\left(3, \frac{12}{5}\right)$ to ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ For what value of C the line x + y + c = 0 will touch the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$

---- 2HA 2211 (HA) ----

Page 2 of 2 (Mathematics)

		Version No.					ROLL NUMBER					THE MICHAEL AND PROPERTY OF THE PROPERTY OF TH			51
		4	1 1											.\	
	L	 (0)		(i)	(0)	(i)	0			0	0		and	EDUCATION	2) 2
		1	®			①	①	1	1	1	1		SLAMA	BAD	
	(2)	2	2	2	2	2	2	(2)	2	2	,	Ob a at No		
	(3	(3)	3	3	3	3	3	3	3	3	Ansv	ver Sheet No		
	(4	4	4	4	4	4	4	4	4				
	(5	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	(5)	Sign.	of Candidate		
	(6	6	6	6	6	6	6	6	<u>⑥</u>	6				
	(7	7	7	7	7	7	7	7	7	7	Pien	of Invigilator		
	(8	(8)	(8)	3	(3)	B	(8)	8	(8)	(8)	Sign.	of Invigilator		
	(9)	9	9	9	9	9	9	9	9	9			i	
se ha De	ection	are d ov g/ov	to be er to erwriti	ansv the	vered Centre	All parts of this on this page and Superintendent. owed. Do not use		SE	CTIC	N –	A (N	S HSSC-II /Iarks 20) 5 Minutes	,	ت نہیں ہے۔لب	کریں۔کاٹ کر دوبارہ لکھنے کی اجازہ
Fi	ll th	e re	leva	nt bu	ıbble	against each	que	stio	า:				نره کوپر کریں۔	لئے درست د	ہر سوال کے سامنے دیے گ
1.	A f		unctic a, ∀		f:x- ⟨, a∈	y defined y is called:	by	0	Linear	funct	tion (Constant function	O Identity function		Implicit function
2.	lf	f(x)	$=\sqrt{x}$	² – 1	then D	Domain of f is:		0	(-∞,∞)	C) [1,∞)	$\bigcap [0,\infty)^{-}$	0	$(-\infty,-1]\cup[1,\infty)$
3.		hat n _{x→3}	res $\frac{x-3}{\sqrt{3}-x}$		occu	rs in Evalu	ating	0	-2√3	()	0,0	2√3	\bigcirc $3\sqrt{2}$	0	3√3
4.	If	f(x) (sin	$0 = \cos(3x)$	is:	then	what is the val	ue of	0	-sin 3 <i>x</i>	:	C), -3x /	$\bigcirc \frac{-3}{\sqrt{1-9x^2}}$	0	$\frac{3}{\sqrt{1-9x^2}}$
5.	If	$f(x)$ $(\sqrt{5})$) = ln. is:	x² th	en w	hat is the valu	ie of	0	$\frac{-1}{5}$		C) 1/5	$\bigcirc \frac{-2}{5}$	0	2 5
6.	(1-	ŀ x²)	$\frac{d}{dx}$ (ta	m ⁻¹ x -	+ cot ⁻¹	x) =		0	2		С	$\frac{2}{1+x^2}$	0	0	$\frac{-2}{1+x^2}$
7.	The	e inte	egral	$\int \frac{dx}{x \ln x}$	- is e	qual to:		\bigcirc	$\ln x + c$		C	$\frac{1}{x}+c$	$\int \ln(\ln x) + c$		$\frac{(\ln x)^2}{2} + c$
8.	Wh	at is	the v	alue'	of k if	$\int_{0}^{1} (3x+k)dx = 2$		0	1 2		0	$\frac{-3}{2}$	$\bigcirc \frac{-1}{2}$	0	<u>2</u> 3
9.						een the x-axis to π ?	and	O 1	1	ē	0	2	<u> </u>	O 8	3
									Pa	ge 1	of 2				

10.	The equation of a line $\frac{x}{P \sec \alpha} + \frac{y}{P \cos ec\alpha} = 1$ (is called:	Symmetric equation of a line	Two intercept form of a line	Slope intercept form of a line	Normal form of a line
11.	For what value of k the lines $kx - 2y + 5 = 0$ and $x - 2ky + 3 = 0$ are parallel line?	3	±1	O 2	±2
12.	The equation of the vertical line through $(-6,5)$		<u>-6</u>	O 5	O 6
13.	Which one satisfies the inequality $x+2y<6$ ((4,1)	(1,3)	(l,4)	(3,1)
14.	What is the length of tangent from (1,1) to the circle $x^2 + y^2 - 2x + 3y + 6 = 0$?	<u> </u>	2 .		O 4
15.	What is the eccentricity of an ellipse $\frac{x^2}{16} + \frac{y^2}{4} = 1$	$\bigcirc \frac{1}{\sqrt{3}}$	$\bigcirc \frac{2}{\sqrt{3}}$	$\bigcirc \frac{\sqrt{3}}{2}$	○ √3
16.	What is the length of latus rectum of the hyperbola whose equation is $\frac{x^2}{16} - \frac{y^2}{9} = 1$	$\bigcirc \frac{2}{9}$	$\bigcirc \frac{9}{2}$	$\bigcirc \frac{4}{9}$	$\bigcirc \frac{9}{4}$
17.	What is the Directrix of Parabola with vertex at origin and focus at (8,0)?	4	x-8=0		
18.	What is the projection of vector $-2\hat{i} + 3\hat{j} + 7\hat{k}$ on $2\hat{j} + \hat{k}$?	$\bigcirc \frac{\sqrt{13}}{5}$	$\frac{13}{\sqrt{5}}$	$\bigcirc \frac{5}{\sqrt{13}}.$	$\bigcirc \frac{\sqrt{5}}{13}$
19.	What is the angle between the vectors $2\overline{i} + \overline{j} + \overline{k}$, $-\overline{i} + 2\overline{j}$ are?	$\bigcirc \frac{\pi}{3}$	$\bigcirc \frac{2\pi}{3}$	$\bigcirc \frac{\pi}{6}$	$\bigcirc \frac{\pi}{2}$
20.	For what value of α the vectors $2\overline{i}$, $\overline{j}+\overline{k}$ and $\overline{i}+\alpha\overline{j}+2\overline{k}$ are coplanar?		<u>2</u>	<u>3</u>	○ -3
					n e

----2HA-I 2211-4111 (L) -----

ROLL NUMBER								
			1					

MATHEMATICS HSSC-II

32

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

NOTE: Attempt any twelve parts from Section 'B' and any four questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet–B if required. Write your answers neatly and legibly. Graph paper will be provided on Demand.

SECTION - B (Marks 48)

Q. 2 Attempt any TWELVE parts. All parts carry equal marks.

 $(12 \times 4 = 48)$

- (i) For the real valued function, f(x) is defined by $f(x) = \sqrt{x^3 + 4}$ find $f^{-1}(x)$. Also verify $f(f^{-1}(x)) = x$
- (ii) Evaluate $\lim_{x\to 0} \frac{\csc x \cot x}{x}$
- (iii) If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x} +\infty}}$ prove that $(2y 1)\frac{dy}{dx} = \cos x$
- (iv) Show that $\sin(x+h) = \sin x + h\cos x \frac{h^2}{2!}\sin x \frac{h^3}{3!}\cos x + \dots$ (by Taylor's Series)
- (v) If $y = \sin^{-1} \frac{x}{a}$ then show that $y_2 = x(a^2 x^2)^{-\frac{3}{2}}$
- (vi) Evaluate $\int \frac{dx}{3x(\ln 3x)^4}$
- (vii) Evaluate $\int_{0}^{3} \frac{x^3 + 9x + 3}{x^2 + 9} dx$
- (viii) Solve the differential equation $\frac{dy}{dx} + \frac{4xy}{4y+2} = x$
- (ix) Find an equation of the perpendicular bisector of a line joining the points A(5,6) and B(8,4).
- Find the value of k such that the lines 2x-2y+2=0, 3x-5y-1=0 and 2x+ky+8=0 meet at a point.
- (xi) Graph the feasible region of the system of linear inequalities by shading $5x + 7y \le 35$, $-x + 3y \le 3$, $x \ge 0$, $y \ge 0$
- (xii) Find the equation of a circle passing through the points A(2,3), B(0,2) having centre at 3x + 2y 3 = 0
- (xiii) Find the equation of Parabola with focus (3,2) and directrix 2x y + 5 = 0.
- (xiv) Find the equation of tangent to hyperbola $9x^2 4y^2 = 36$ parallel to the line 3x + 2y + 7 = 0
- (xv) Find the scalar ' α ' so that vectors $3\overline{i} + \alpha \overline{j} + 4\overline{k}$ and $4\overline{i} + 5\overline{j} + \alpha \overline{k}$ are perpendicular to each other.
- (xvi) Find the volume of the tetrahedron whose vertices are A(-2,1,4), B(3,2,5), C(-3,-5,0), D(5,8,9)

Page 1of 2 (Mathematics)

Note:

Attempt any FOUR questions. All questions carry equal marks.

 $(4 \times 8 = 32)$

B(4,5)

Q. 3 Let
$$f(x) = \begin{cases} mx + 3 & \text{if } x < 3 \\ m + n & \text{if } x = 3 \\ -x + 9 & \text{if } x > 3 \end{cases}$$

- a. Find $\lim_{x\to \bar{3}} f(x)$ and $\lim_{x\to 3} + f(x)$
- b. Find the $\lim_{x\to 3} f(x) = f(3)$
- c. Find the value of m and n such that f(x) is continuous at x=3
- d. After finding the values of m and n, sketch the graph of the function
- Q. 4 The perimeter of a triangle is 18 centimetres. If one side is of length 8 cm. What are lengths of the other sides for maximum area of a triangle?
 - a. Find function f(x)
 - b. Find f'(x) and f''(x)
 - c. Find the values of f(x) for which has maximum or minimum values?
 - d. Find the sides of triangle ABC
- Q. 5 Evaluate the integral $\int \frac{2x^2 + 5x + 3}{(x-2)^2(x^2 + x + 1)} dx$
 - a. Resolve $\frac{2x^2 + 5x + 3}{(x-2)^2(x^2 + x + 1)}$ into Partial fraction
 - b. After Partial Fraction Integrate the result $\int \frac{2x^2 + 5x + 3}{(x-2)^2(x^2 + x + 1)} dx$
- Q. 6 The diagram shows a triangle ABC where A(-2,3), B(4,5), C(6,2) are vertices of $\triangle ABC$
 - a. Find the slopes of side \overline{AB} , \overline{BC} and \overline{AC}
 - b. Find the angle between the sides \overline{AB} and \overline{BC} and angle between \overline{AB} and \overline{AC}
 - c. Find the equations of sides \overline{AB} and \overline{BC}
 - d. Find the area of triangle ABC check these three points are collinear $\frac{1}{A(-2,3)}$

- at a profit of Rs. 200 and table at a profit of Rs. 150. Assuming that he can sell all the items that he can buy. How should he invest his money in order to maximize his profit?
- Q. 8 Find the Centre, Foci, Eccentricity, Vertices and Equation of directrices of the conic $25x^2 + 4y^2 250x 16y + 541 = 0$