Page 1 of 2

8.	The SI unit of capacitance of an electrolytic capacitor is: ایک الکیام ولا محیک کپییم کی کپیمی فینس کا SIS یونٹ ہے۔	0	Volt وولث	0	Ampere ریزیا	0	Farad	0	Coulomb کولب
9.	Two small charged spheres are separated by $2mm$. Which of the following would produce the greatest attractive force? $2mm = 1$ $2mm $	0	+3q and $-1q$	0	+2q and $-2q$	0	+1q and $+4q$	0	-1q and $-4q$
	If two resistors $R_{\rm l}=2\Omega$ and $R_{\rm 2}=2\Omega$ are connected in parallel across a voltage source of $6V$ then equivalent resistance						1		
10.	$\left(R_{e}\right)$ of the circuit is: $R_{e}=2\Omega$ اور $R_{e}=2\Omega$ ایک $R_{e}=2\Omega$ ایک $R_{e}=2\Omega$ ایک عراقی پیرالل میں جوڑے جاکیں تو سرکٹ کی سیادی رزسٹنس $\left(R_{e}\right)$ ہے:	0	1Ω	0	2Ω	0	$\frac{1}{2}\Omega$	0	4Ω
11.	Magnetic force on a current carry in conductor is increased if: ایک کرنٹ بردار تار پر میگنیک فورس بزھے گی جب:	0	Length of wire is decreased تارکی لبانی کم کردی جائے	0	Strength of magnetic field is decreased مگینیگ فیلڈی شدت کو کم کردیاجات	0	The current is decreased کرند کو کم کیاجائے	0	The current is increased کرند کوبڑھایاجا کے
12.	For AND gate output $X = 1$ when inputs A and B are. A B X X X X X X X	40	OUV;	0	0,0	0	1,0	0	0,1
	• $v = f\lambda$	_	—2SA-I 2207(HA	A)-607	73.00	4			

- $v = f\lambda$
- Intensity level = $10\log \frac{I}{I_o}$
- $P = \frac{1}{f}$ $F = \frac{1}{4\pi\varepsilon_o} \times \frac{q_1 q_2}{r^2} \quad \text{or} \quad F = K \frac{q_1 q_2}{r^2}$
- $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$
- A.B = X
- Speed of light = $3 \times 10^8 \, ms^{-1}$

	RO				

گل نمبر حصته دوم اور سوم: 53

وتت:2:45 گھنٹے

نوٹ: حصد "دوم"اور"سوم"کے جوابات علیحدہ سے مہیا کی ٹئی جوابی کا پی پر دیں۔حصتہ دوم سے گیارہ (11) اجزاء اور حصتہ سوم بیں سے کوئی سے دو(02) سوال حل کریں۔ آپ کے جوابات صاف اور واضح ہونے چائیئن۔

حصته دوم (گل نمبر 33)

(11x3 = 33)

سوال نمبر ۲: مندرجہ ذیل میں سے کوئی سے گیارہ (11) اجزاء کے جوابات مخفر لکھیں۔ تمام سوالوں کے نمبر برابر ہیں۔

$$g_m = \frac{g_e}{6}$$
 چاند پر موجود $1m$ لمبائی کے سادہ پنڈولم کاٹائم پیریڈ معلوم سیجیے۔ اگر $g_m = \frac{g_e}{6}$

یرالل طریقے سے جوڑے گئے تین رزسٹر زمیں مساوی رزسٹس
$$R$$
 کی قیت معلوم کریں۔اگر $R_2 = 9\Omega$ اور $R_3 = 6\Omega$ قیت کے ہیں۔

(Xi) ایک سٹیپ ڈاؤن ٹرانسفار مر میں چکروں کی نسبت 1: 100 ہے۔ پرائمری وولیٹج 1707 ہے جینڈری کوائل میں وولٹیج معلوم کریں۔ (Xii) وضاحت کریں کہ درج شکل (OR) آرگیٹ کے طور پر عمل کرتی ہے۔ بولیئن علامتیں بھی تحریر کریں۔

(XV) ایک غار میں پڑی راکھ میں کار بن – 14 کی ایکٹیو بیٹی تازہ لکڑی کے مقابلے میں $\frac{1}{8}$ ہے۔ راکھ کی عمر کا تغین کریں جبکہ 14 – 2 کی ہاف لا کف5730 سال ہے۔

حصه سوم (گُل نمبر20)

(02x10=20)

(کوئی ہے دوسوال حل تیجیے۔ تمام سوالوں کے نمبر برابر ہیں۔)

(06)

(04)

الف۔ کیپیسٹر زکوسریز میں جوڑنے کاطریقہ وضاحت سے بیان کریں۔ ب۔ الیکٹر و میگنیٹک انڈکشن کیا ہے؟انڈیو سڈ ای ایم ایف کی مقدار پر اثر انداز ہونے والے کوئی سے دو عوامل تحریر کریں۔ نیز لینز کا قانون اور اس کی اہمیت

بيان کريں۔

سوال نمبر ۴۰: الف۔ کمپاؤنڈما ٹنگیروسکوپ کی کنسٹر کشن اور در کنگ وضاحت ہے بیان کریں اور رے ڈا ٹیگرام بنائیں۔ما ٹنگیروسکوپ کی میگنی قبیشن معلوم کرنے کافار مولا تحریر کریں۔

ریاست ب- ایک ربل نمینک میں پانی کی سطح پر وائبریٹ کرتے ہوئے لکڑی کے ایک ٹکڑے کی فریکویٹنی 12Hz ہے۔اس سے پیداہونے والی ویو لیسٹکتھ 3cm کے۔ویو کی میدیٹر کیاہو گی؟

عماری کے خواری کی بیاری کی ہے۔ اور کی جانے ہیں ہے۔ کی اف الا کف سے کیام ادہے؟ ہاف لا کف کی پیائش وضاحت ہے بیان کریں۔ گراف کے ذریعے تصویری (06)

خاکہ بنائیں۔ ب۔ ایک کنڈ کٹر کے اطراف پوٹینشل ڈفرینس 10V ہے۔اگر اس کنڈ کٹر میں سے 1.5A کرنٹ بہ رہاہو تواس کرنٹ سے 2منٹ میں جول کے قانون کے مطابق

ب۔ ایک گنڈ گئر کے اطراف پو میکسل ڈفر میس 107 ہے۔ اگر اس کنڈ گئر میں سے 1.5*A گرنٹ ب*ہ رہاہو تو اس کرنٹ سے 2 منٹ میں جول کے قانون کے مطابق (**04**)

----- 2SA-I 2207 (HA) -----

$$T = \frac{1}{2\pi} \sqrt{\frac{l}{g}}$$
 $S = vt$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

$$\frac{N_s}{N_p} = \frac{V_s}{V_p}$$

$$A.B = X$$
;
 $A = \bar{A}$;
 $X = A + B$

$$E = VIt v = f\lambda$$

$$N = \frac{N_o}{8}$$
; $N = N_o \times \frac{1}{2^n}$; Total Time = $n \times Half$ lives

PHYSICS SSC-II

Time allowed: 2:45 Hours

Total Marks Sections B and C: 53

NOTE: Answer any eleven parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION - B (Marks 33)

Q. 2 Answer any ELEVEN parts from the following. All parts carry equal marks.

 $(11 \times 3 = 33)$

- (i) Discuss and show that damping progressively reduces the amplitude of oscilation.
- (ii) Find the time period of a simple pendulum of 1m length, placed on moon. The value of 'g' on the surface of moon is $\frac{1}{6}$ of its value on earth i.e. $g_m = \frac{g_o}{6}$
- (iii) Discuss the importance of acoustics in architectural design of lecture halls and theatre halls.
- (iv) What is Cathode Ray Oscilloscope CRO? Make a list of its use.
- (v) A ship is anchored where the depth of water is 120m. An ultrasonic signal sent to the bottom of the lake returns in 0.16s. What is the speed of sound in water?

- (vi) Describe the use of logic gates in house safety alarm.
- (vii) Draw neat V-I graphs to show the voltage-current relationship in metals, filament lamp and thermistor.
- (viii) State Coulomb's law and give its mathematical relation. Write the value and SI units of constant of proportionality 'K' in air.
- Find the value of Equivalent resistance R_e in the parallel combination of three resistors $R_1 = 18\Omega$ $R_2 = 9\Omega$ and $R_3 = 6\Omega$.
- (x) How can the direction of a magnetic field formed around a current carrying conductor be determined?
- (xi) A step-down transformer has a turn ration of 100:1. An AC voltage of amplitude 170V is applied to the primary. What is the voltage in the secondary?
- (xii) Show that the circuit given below in figure acts as OR gate. Write down the related Boolean equations also.

- (xiii) What are cathode rays? Explain the deflection of cathode rays by a magnetic field.
- (xiv) State any three (03) risks of ICT to society.
- (xv) Ashes from a camp fire deep in a cave show carbon-14 activity of only one-eighth the activity of fresh wood. How long ago was that comp fire made? The half-life of Carbon-14 is 5730 years.

SECTION - C (Marks 20)

Note: Attempt any TWO questions. All questions carry equal marks.

 $(2 \times 10 = 20)$

(6)

(4)

(6)

- Q. 3
 b. Explain in detail the series combination of capacitors.
 What is electromagnetic induction? List any two factors affecting the magnitude of induced emf.
 - b. What is electromagnetic induction? List any two factors affecting the magnitude of induced emr.

 Also state Lenz's law and its significance
- Q. 4 a. Explain the construction and working of a compound microscope by the help of a ray diagram. Write down the formula to determine the magnification of microscope.
 - b. A wooden bar vibrating on the water surface in a ripple tank has a frequency of 12Hz. The resulting wave has a wavelength of 3cm. What is the speed of the wave. (4)
- Q. 5 a. What is radio activity. What is meant by half-life of a radioactive element? Explain how can the half-life of an element be measured. Draw neat graph to illustrate the answer. (6)
 - b. By applying a potential difference of 10V across a conductor a current of 1.5A passes through it. How much energy would be obtained from the current in 2 minutes according to Joule's law? (4)

$$T = \frac{1}{2\pi} \sqrt{\frac{l}{g}} \qquad \qquad S = vt \qquad \qquad \frac{\frac{--2\text{SA-I} 2207 \text{ (HA)}}{1}}{\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} \qquad \qquad \frac{\frac{N_s}{N_p}}{\frac{N_p}{N_p}} = \frac{V_s}{V_p} \qquad \qquad A.B = X \ ; \qquad \qquad A = \bar{A} \ ; \qquad \qquad X = A + B$$

$$E = VIt$$
 $v = f\lambda$ $N = \frac{N_o}{8}; N = N_o \times \frac{1}{2^n}; Total Time = n \times Half lives$

	Version No.				ROLL NUMBER					WENNEUMTE AND SC.			
	2	0	7	4								BOAN ED	
	0	•	0	0	0	0	0	0	0	0	0		
	1	1	1	1	1	1	1	1	1	1	1) (JAMABA)	
	•	2	2	2	2	2	2	2	2	2	2	Answer Sheet No	
	3	3	3	3	3	3	3	3	3	3	3		
	4	4	4	•	4	4	4	4	4	4	4		
	(5)	<u>(5)</u>	(5)	(<u>5</u>)	5	(5)	⑤	(5)	(5)	(5)	(<u>5</u>)		
	6	6	6	6	6	6	6	6	6	6	6		
	7	7	0	7	7	7	7	7	⑦ ◎	7	7	Sign of Invigilator	
	8	8	8	8	8	8	8	®	8	8	(8)		
Sant	(9)	③	9	(9)	All parts of the	(9) nis	9	9	9	9	9		
secti	Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting (superwriting is not allowed Do not use) SECTION – A (Marks 12)												
Dele		/erwriti			wed. Do not us							Minutes	
Fill	the re	eleva	nt bu	bble	against ead	h que	stio	n:				ہر سوال کے سامنے دیے گئے درست دائرہ کو پر کریں۔	
	Alpha	(α)	partic	le car	ries a charge	of:						2. 0.4. 0.1.	
1.		` /			میکل پر کتنا چارج ہو تاہے؟			2e		(<u> </u>	3e	
	A con		ens of	focal	l length 6.00a	m ha	3	0	<u> </u>		<u> </u>	0.167.0	
2.	uie h	-4		ں لینز کی پاو	6.0 فوكل لينقه كے كنو يك	ی <i>د 0cm</i>	$_{1}$ \bigcirc	1.671	4/	($0.167D$ $\bigcirc 0.016D$ $\bigcirc 16.70D$	
	The v	oltage meta	llic co	nduct	urrent graph of		\bigcirc	(N)¢"		2	, ay		
3.			٢٠٢	راف کون م	ھاتی کنڈ کٹر کا وو لٹیج کرنٹ گر	ېك او <i>جم</i> ك د م	₁ U	Voltage (V)	ent (A)	→ —	7	Content (V) To Conten	
4.	The s		vater.		water depends			Depth	1	()	Mass Volume Density	
			-4	גופ"	فآر کا انحصار پانی کی	نی میں ویو کی	<u>پ</u>	گهرائی 				وينسني واليوم ماس	
5.	The v	oice o	f child		shrill due to: ریک ہونے کی کیاوجہ ہوتی	وں کی آواز با		Large wavel کاویولینتھ	ength	()	Large High pitch High intensity amplitude زیارہ اسمبیل ٹیوڈ لیارہ اسمبیل ٹیوڈ	
					£			Short	focal	 e		Large focal Large focal Short focal length, small length, large length, small	
6.	A com	poun			e has an obje) نکوپکاآبجیکٹیو			diame طریرا اقطر	eter	_ (\bigcirc d	diameter diameter diameter	
j.			. تا ہے۔	яв	ىلوپ كالېجىدىليو	پاؤنڈہا سیرو		ر اور بردا تھر	م تو مل سيري		طر	ציי שישונו פיציים גיט פין שישונו גיוש גיט פין שישונו ביישו	
A positive test charge of $30\mu c$ is placed in													
	an electric field. The force on it is $0.600N$ Find the magnitude of electric field at the												
	location of test charge. ب 30 μc پازیوٹیٹ چارج الکیٹرک فیلڈ میں رکھا گمیا ہے۔ اس پر						10	0.18>	×10 ⁻⁴ <i>I</i>	VC ⁻¹ ($0.5 \times 10^{-4} NC^{-1}$ \bigcirc $0.5 \times 10^{4} NC^{-1}$ \bigcirc $2.00 \times 10^{4} NC^{-1}$	
					0 فورس عمل کر رہی ہے۔	.600 <i>N</i>							
					ریں۔	قدار معلوم ک	•						
					n of two car				-14-0				
Ω ,	where $C_1 < C_2$, the equivalent capacitand will be:						\bigcirc	$C_{aa} =$	С,	(γ	$C_{eq} = \frac{1}{C_1} + \frac{1}{C_2}$ $C_{eq} = C_1 + C_2$ $C_{eq} < C_1$	
٥,	ماوی کپیسی	پیرالل طریقے سے جوڑے گئے ہیں۔ ان کی مساوی سپیسی $C_1 < 0$,	eq	2	(C_1 C_2 C_2 C_3 C_4 C_4 C_4 C_5	
						بس کیاہ؟	Î						

9.	If the frequency of A.C supply is $60Hz$ the direction of current will change times مرتب _	O 100	<u>120</u>	30
10.	When N-pole of a bar magnet is moved towards the coil, the pole generated on this face of the coil is: ماؤتھ پول اگر بار میگنیٹ کے نار تھ پول کو کو اکل کے قریب لایا جائے تو کو اکل کے اس ژن پُر	First N- pole and then S- pole پياني ارتھ پول پر مادتھ پول	First S- pole and then N- pole پيا ماد تھ پول پګرنار تھ پول	N-pole ئار ^ج ھ پول
11.	The output X of the given circuit is same as the output of: A B NAND X X X X X X X X	O NOR	O NOT	O AND
12.	Sound is stored/recorded on audio cassette on the principle of: ۱ ایزیو کیسٹ پر ساؤنڈ کس اصول پر ریکارڈ کی جاتی ہے؟ Fibre optio	c Magnetism	Digital electronics ویجیٹل الیکٹر ا ^{ککس}	Electrostatics الكِثْرُوسُنِيْكُسِ

- $E = \frac{F}{q}$
- $C_{eq} = C_1 + C_2$
- $A.B = X; \overline{A.B} = X; \overline{A+B} = X; A = \overline{A};$
- $P = \frac{1}{f}$

www.eduvision.edu.of

7 5	ROL	L NU	MBER	117

PHYSICS SSC-II

Time allowed: 2:45 Hours

Total Marks Sections B and C: 53

NOTE: Answer any eleven parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION - B (Marks 33)

Q. 2 Answer any ELEVEN parts from the following. All parts carry equal marks. $(11 \times 3 = 33)$

- (i) Explain the reflection of water waves with the help of ripple tank. Draw a neat diagram to illustrate the phenomenon.
- (ii) Differentiate between pitch and quality of sound. Draw graph to show variation of pitch with frequency.
- (iii) Calculate the wavelengths of sound at the lowest audible frequency (20Hz) and highest audible frequency (20,000Hz). (Assume speed of sound in air is $332ms^{-1}$)
- (iv) What is short-sightedness (myopia)? How can it be corrected?
- (v) A point charge of +2C is transferred from a point at potential 100V to a point at potential 50V, what would be the energy supplied by the charge?
- (vi) Describe the construction of gold leaf electroscope by the help of diagram.
- (vii) State the functions of the live, neutral and earth wires in the domestic main supply.
- (viii) What is the working principle of a transformer? Why is it used in A.C circuits? Also discuss an ideal transformer.
- (ix) Discuss NOT operation. Why a NOT gate is called inverter?
- (x) Find the direction of magnetic field around a straight wire carrying current in:
 - (a) Upward direction (b) Downward direction
- (xi) Describe the function of fax machine.
- (xii) Briefly describe the process of Nuclear fusion by giving an example.
- (xiii) A girl uses a concave mirror when doing her makeup. The mirror has radius of curvature of 38cm
 - (a) What is the focal length of the mirror?
 - (b) She is 50cm away from the mirror. Where will her image appear?
 - (c) Will the image be upright or inverted?
- (xiv) In series combination of three capacitors $C_1 = 3\mu F$ and $C_2 = 4\mu F$. If $C_{eq} = \frac{60}{47}\mu F$ find C_3
- (xv) Describe what is meant by intensity level? Also write its unit.

SECTION - C (Marks 20)

Note: Attempt any TWO questions. All questions carry equal marks.

 $(2 \times 10 = 20)$

- Q. 3 a. What is resistance? What is its SI unit? Explain the factors affecting resistance of a metallic conductor. (6)
 - b. A power station generates 500MW of electrical power which is fed to a transmission line. What current would flow in the transmission line, if the input voltage is 250KV? (4)
- Q. 4 a. Represent and explain the three radioactive decays by means of nuclear equations.

 Give one example in each case.

 (6)
 - b. If three resistance $R_1=2\Omega$, $R_2=3\Omega$ and $R_3=6\Omega$ are connected in parallel across a 6V supply then find:
 - (i) Equivalent resistance of the circuit.
 - (ii) Current passing through each resistance.

(iii) The total current of the circuit.

- Q. 5 a. Enlist the basic elements of an AC generator and discuss the function of each. (6)
 - b. If 100 waves pass through a point of a medium in 20s, what is the frequency and the time period

of the wave? If its wavelength is
$$6cm$$
, calculate the wave speed. (4)

$$V = f\lambda$$

$$E = qV$$

$$f = \frac{R}{2}; \frac{1}{f} = \frac{1}{p} + \frac{1}{q}$$

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

$$f = \frac{No.of\ waves}{total\ time};\ T = \frac{1}{f};\ v = f\lambda$$

$$\frac{1}{R_e} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3};\ I = \frac{V}{R};\ I = I_1 + I_2 + I_3$$

وقت:45 كفين

(xi)

انوٹ: حصد "دوم" اور "سوم" کے جوابات علیحدہ سے مہیا کی گئی جوابی کا پی پر دیں۔ حصتہ دوم سے گیارہ (11) اجزاء اور حصتہ سوم میں سے کوئی سے دو(02) سوال حل کریں۔ آپ کے جوابات صاف اور واضح ہونے چائیئن۔

حقته دوم (گل نمبر 33)

(11x3 = 33)

سوال نبر ۲: مندرجہ ذیل میں ہے کوئی ہے میارہ (11) اجزاء کے جوابات مخضر لکھیں۔ تمام سوالوں کے نمبر برابر ہیں۔

- (i) ریل ٹینک کی مدوسے پانی کی وایوز کی رفلیکٹن کی وضاحت کریں۔ ڈائیگر ام کی مدوسے جواب واضح کریں۔
- (ii) آواز کی چاور کوالٹی کے در میان کیا فرق ہے؟ گراف کی مددسے چکی فریکو پینسی کے ساتھ تبدیلی کو واضح کریں۔
- (iii) میلی ترین فریکونسی (20 Hz) اور بلندترین فریکونسی (20,000 Hz) پر آواز کی دیولینچه معلوم کریں۔ (فرض کریں که آواز کی ہوامیں رفتار 332ms-1
 - (iV) قریب نظری (مائی اوپیا) سے کیام ادہے؟ اس نقص کو کس طرح دور کیا جاسکتا ہے؟
 - (V) ایک 2C+ کے بوائٹ چارج کو 100V پوٹینشل والے بوائٹ سے 50V پوٹینشل والے بوائٹ پر منتقل کیا جاتا ہے چارج کی مہیا کردہ ازجی کیا ہوگی؟
 - (vi) ڈائیگرام کی مردسے گولڈلیف الیکٹر وسکوپ کی کنسٹر کشن بیان کریں۔
 - (Vii) . محمر یلومین سیلائی میں لائیو، نیوٹرل اور ارتھ وائز کے کیا کر دار ہیں؟
 - (Viii) فرانسفار مرس اصول کے تحت کام کر تاہے؟ اے می سرکٹ میں ٹرانسفار مرکیوں استعال کیاجا تاہے؟ آئیڈیل ٹرانسفار مرکوبیان کریں۔
 - (ix) NOT آپریش بیان کریں۔NOT گیٹ کوانورٹر کیوں کہاجاتاہے؟
 - (X) ایک سیدھے کرنٹ برادروائر کی میگنیٹک فیلڈ معلوم کریں جب
 - الف۔ کرنٹ اوپر کی سمت بدر ہاہو۔ ب۔ کرنٹ ینچے کی سمت بدر ہاہو۔ فیکس مشین کا فنکشن تحریر کریں۔
 - (Xii) نیوکلیئر فیوژن کے عمل کی مخضر وضاحت ایک مثال کی مدوسے کریں۔
 - (Xiii) ایک لڑی میک اپ کے لیے ایک تکیومر داستعال کرتی ہے جس کاریڈیس آف کردیچر 38cm ہے۔
 - الف۔ مررکی نوکل لینگتھ کیاہے؟ ب اگر اولی کا مررسے فاصلہ 50cm ہوتواس کی ایج کہاں پرد کھائی دے گی؟
 - ج۔ ایج سید هی ہوگی یاالثی؟
 - $C_{1} = 3\mu F$ اور $C_{2} = 4\mu F$ یں۔ اگر مساوی کیپیسٹنس $C_{2} = 4\mu F$ ہیں۔ اگر مساوی کیپیسٹنس (Xiv)
 - (XV) ساؤنڈ کے انٹیسٹی لیول سے کیامرادہے؟ اس کو آگائی بھی تحریر کریں۔

حصه سوم (گل نمبر 20)

(02x10=20)

(کوئی سے دوسوال حل سیجے۔ تمام سوالوں کے نمبر برابر ہیں۔)

سوال نمبرسا: الف رزسنس كياب؟ اس كا الايون كياب؟ يينل كند كرك رزسنس پركون سے عوامل اثر انداز ہوتے ہيں۔ وضاحت سجي

ب۔ ایک پاور اسٹیشن 500MW الیکٹریکل پاور پیدا کر تا ہے جو کہ ٹرانسمیشن لائن کو مہیا کی جاتی ہے۔ ٹرانسمیشن لائن میں بہنے والا کرنٹ معلوم کریں اگر ان بے وولیج 250KV ہو۔

(06)
الف۔ نیوکلیئرری ایکشن مساوات کے ذریعے ریڈیو ایکوٹی کے تینوں مظاہر کی وضاحت کریں۔ ہر مظہر میں ایک مثال دیں

ب۔ اگر تین رز سٹرز $R_3 = 6\Omega$ ہے ایک $R_1 = 2\Omega$ ہیا آئی کے ساتھ پیرالل جوڑ میں لگائے گئے ہوں تو مندرجہ ذیل مقداریں معلوم کریں۔

(i) سرکٹ کی مساوی رزسٹنس (ii) ہررزسٹنس میں بہنے والا کرنٹ (iii) سرکٹ میں بہنے والا مساوی کرنٹ

سوال نمبره: الف AC جزير كے بنيادى ايليمنٹ كون كون سے ہيں؟ ہر ايليمنٹ كافنكشن بيان كريں۔

ب۔ اگر 100 واپوز میڈیم کے ایک پوائنٹ سے 20s میں گزرتی ہوں تواس ویو کی فریوینٹی اور ٹائم پیریڈ کیا ہو گا؟ اگر اس کی ویولینگتھ 6cm ہوتو ویو کی سپیڈ کیاہوگی؟

 $V = f\lambda \qquad E = qV \qquad f = \frac{R}{2}; \frac{1}{f} = \frac{1}{p} + \frac{1}{q} \qquad \frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \qquad P = V$ $f = \frac{No.of\ waves}{total\ time}; T = \frac{1}{f}; v = f\lambda \qquad \frac{1}{R_e} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}; I = \frac{V}{R}; I = I_1 + I_2 + I_3$